Advanced Machine Learning - HT 2017 a.k.a. Computational Learning Theory Introduction and Course Details

Varun Kanade

University of Oxford January 16, 2017

What is Machine Learning?

- 200-basic level categories
- Here: Six pictures containing airplanes and people
- Dataset contains over 400,000 images
- Imagenet competition (2010-16)
- All recent successes through very deep neural networks!

What is Machine Learning?

Movie / User	Alice	Bob	Charlie	Dean	Eve
The Shawshank Redemption	7	9	9	5	2
The Godfather	3	?	10	4	3
The Dark Knight	5	9	?	6	?
Pulp Fiction	?	5	?	?	10
Schindler's List	?	6	?	9	?

Netflix competition to predict user-ratings (2008-09) Any individual user will not have used most products Most products will have been used by some individual

Training data has inputs \mathbf{x} (numerical, categorical) as well as outputs y (target)

Regression: When the output is real-valued, e.g., housing price

Classification: Output is a category

- Binary classification: only two classes e.g., spam
- Multi-class classification: several classes e.g., object detection

Unsupervised Learning : Group Similar News Articles

Group similar articles into categories such as politics, music, sport, etc.

In the dataset, there are no labels for the articles

Active and Semi-Supervised Learning

Active Learning

- Initially all data is unlabelled
- Learning algorithm can ask a human to label some data

Semi-supervised Learning

- Limited labelled data, lots of unlabelled data
- How to use the two together to improve learning?

Outline

What is Machine Learning?

What is Learning Theory?

Course Logistics

The goal of (computational) learning theory is to develop formal models to analyse questions arising in machine learning

- How much data do we need to learn?
- What amount of computational resources are necessary for learning?
- Are there hard learning problems?

In this course we'll cover several models that aim to capture questions that are of interest in modern machine learning

- (How) can we learn in the presence of noisy data?
- What can we learn when data is obtained in an online manner?
- (How) can we do useful machine learning while preserving privacy?
- Can we learn when data and computational power is distributed?

Towards the end of the course we'll cover some of the latest topics in the area

- Can we develop a theoretical understanding of neural networks?
- Connections to information theory, game theory, etc.
- Conference on Learning Theory (COLT)

Outline

What is Machine Learning?

What is Learning Theory?

Course Logistics

Course Information

Website

www.cs.ox.ac.uk/people/varun.kanade/teaching/AML-HT2017/

Lectures

Mon 16h-18h, Wed 14h-15h in LTA

Classes

Weeks 3, 4, 5, 6, 7 Instructors: Matthias Gerstgrasser and Francisco Marmolejo

Office Hours

Wed 15h-16h in #449 (Wolfson)

Course Information

Textbooks

Kearns and Vazirani - An Introduction to Computational Learning Theory Mohri, Rostamizadeh, Talwalkar - Foundations of Machine Learning Shalev-Shwartz and Ben-David - Understanding Machine Learning Papers and (rough) lecture notes will be posted

Assessment

Take Home Exam

Piazza

Use for course-related queries

Sign-up at piazza.com/ox.ac.uk/other/amlht2017

In this course, we will cover

- Mathematical formulations for different learning paradigms
- Definitions, theorems, proofs
- Design and analysis of learning algorithms
- Provable guarantees on run-time and sample complexity

In this course, we will cover

- Mathematical formulations for different learning paradigms
- Definitions, theorems, proofs
- Design and analysis of learning algorithms
- Provable guarantees on run-time and sample complexity

In this course, we will not cover

 Practical applications of learning algorithms - although understanding the theory will likely make you a better practitioner

It is expected that you will be familiar with most of the following

- The notion polynomial time, space, etc.
- Big O notation
- Basic probability theory expectation, independence, etc.

It is expected that you will be familiar with most of the following

- The notion polynomial time, space, etc.
- Big O notation
- Basic probability theory expectation, independence, etc.

It'd be helpful if (though not necessary that) you've seen at least some of the following

- Basic complexity theory such as NP-completeness
- Applied Machine Learning
- Optimisation algorithms Linear Programming

This is an advanced theoretical course. If you are taking this course, you should

- Be keen to understand the theory behind machine learning algorithms
- Be able to fill in details of algorithms and proofs omitted in the lectures
- Develop an ability to read research papers