Computational Learning Theory

Hilary Term 2021
Week 9

Problem Sheet 2

Instructions: The problem sheets are designed to increase your understanding of the material taught in the lectures, as well as to prepare you for the final exam. You should attempt to solve the problems on your own after reading the lecture notes and other posted material, where applicable. Problems marked with an asterisk are optional. Once you have given sufficient thought to a problem, if you are stuck, you are encouraged to discuss with others in the course and with the lecturer during office hours. You are not permitted to search for solutions online.

1 Learning Decision Lists

A k-decision list over n boolean variables x_{1}, \ldots, x_{n}, is defined by an ordered list

$$
L=\left(t_{1}, b_{1}\right),\left(t_{2}, b_{2}\right), \ldots,\left(t_{l}, b_{l}\right)
$$

and a bit b, where each t_{i} is a term (conjunction) of at most k literals (positive or negative) and each $b_{i} \in\{0,1\}$. For $a \in\{0,1\}^{n}$ the value $L(a)$ is defined to be b_{j}, where j is the smallest index satisfying $t_{j}(a)=1$ and $L(a)=b$ if no such index exists. Pictorially, a decision list can be depicted as shown below. As we move from left to right, the first time a term is satisfied, the corresponding b_{j} is output, if none of the terms is satisfied the default bit b is output.

Give an efficient PAC learning algorithm for the class of decision lists. As a first step, argue that it is enough to just consider the case where all the terms have length 1, i.e., in fact they are just literals.

2 Learning Convex Sets in $[0,1]^{2}$

In this question we will consider the learnability of convex sets. Let us consider the domain to be $X=[0,1]^{2}$, the unit square in the plane. For $S \subset X$ a convex set, let $c_{S}: X \rightarrow\{0,1\}$, where $c_{S}(x)=1$ if $x \in S$ and 0 otherwise. Let $C=\left\{c_{S} \mid S\right.$ convex subset of $\left.X\right\}$ be the concept class defined by convex sets of $[0,1]^{2}$.

1. Show that the VC dimension of C is ∞. This shows that the concept class of convex sets of $[0,1]^{2}$ cannot be learnt by an algorithm (efficiently or otherwise) that uses a sample whose size is bounded by a polynomial in $1 / \epsilon$ and $1 / \delta$ alone.

Computational Learning Theory
 Hilary Term 2021

Week 9
2. We will consider a restriction of PAC-learning where the learning algorithm is only required to work for a specific distribution D over X. Show that if D is the uniform distribution over $[0,1]^{2}$, then the concept class of convex sets is efficiently PAC-learnable in this restricted sense, where efficiency means running time (and sample complexity) bounded by a polynomial in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$.
Hint: Consider the algorithm that simply outputs the convex hull of positive points as the output hypothesis. You may assume without proof that the convex hull of a set of points in the plane can be computed in polynomial time. You may use the fact that the perimeter of any convex set in the unit square can be at most 4 .

3 Growth Function

Prove that for any $d \in \mathbb{N}$, there is a concept class C such that $\operatorname{VCD}(C)=d$, and that for any $m \in \mathbb{N}, \Pi_{C}(m)=\Phi_{d}(m)$.

4 VC Dimension of Linear Halfspaces in \mathbb{R}^{n}

We will show that the concept class of linear halfspaces in \mathbb{R}^{n} has VC-dimension $n+1$.

1. Give a set of $n+1$ points in \mathbb{R}^{n} that is shattered by the class of linear halfspaces.
2. We want to show that no set of $m=n+2$ points in \mathbb{R}^{n} can be shattered by the class of linear halfspaces. For this you can use what is called as Radon's theorem, described below.
3.* Prove Radon's theorem.

Given a set $S=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathbb{R}^{n}$, the convex hull of S is the set,

$$
\left\{z \in \mathbb{R}^{n} \mid \exists \lambda_{1}, \ldots, \lambda_{m} \in[0,1], \sum_{i=1}^{m} \lambda_{i}=1, z=\sum_{i=1}^{m} \lambda_{i} x_{i}\right\}
$$

Radon's Theorem: Let $m \geq n+2$, then S must have two disjoint subsets S_{1} and S_{2} whose convex hulls intersect.

5 Properties of AdaBoost

Consider the AdaBoost algorithm as described in the lecture notes.

1. Show that the error of h_{t} with respect to the distribution D_{t+1} is exactly $1 / 2$.
2. What is the maximum possible value of $D_{t}(i)$ for some $1 \leq t \leq T$ and $1 \leq i \leq m$?

Computational Learning Theory
Hilary Term 2021 Week 9

3. Fix some example, say i, let t_{i} be the first iteration such that $h_{t_{i}}\left(x_{i}\right)=y_{i}$. How large can t_{i} be?
