
Computational Learning Theory
Trinity Term 2021

Week 1

Problem Sheet 3

Instructions: The problem sheets are designed to increase your understanding of the material
taught in the lectures, as well as to prepare you for the final exam. You should attempt to solve
the problems on your own after reading the lecture notes and other posted material, where
applicable. Problems marked with an asterisk are optional. Once you have given sufficient
thought to a problem, if you are stuck, you are encouraged to discuss with others in the course
and with the lecturer during office hours. You are not permitted to search for solutions online.

1 Weak Learning CONJUNCTIONS and PARITIES

Consider the instance space Xn = {0, 1}n. Consider the following hypothesis class:

Hn = {0, 1, x1, x1, x2, x2, . . . , xn, xn}.

The hypothesis class contains 2n + 2 functions. The functions “0” and “1” are constant and
predict 0 and 1 on all instances in Xn. The function “xi” evaluates to 1 on any a ∈ {0, 1}n
satisfying ai = 1 and 0 otherwise. Likewise, the function “xi” evaluates to 1 on any a ∈ {0, 1}n
satisfying ai = 0 and 0 otherwise. Thus a single bit of the input determines the value of these
functions; for this reason these functions are sometimes referred to as dictator functions.

1. Show that the class CONJUNCTIONS is 1
10n -weak learnable using H.

Hint: The factor 10 is not particularly important, just a sufficiently large constant.

2. Let CONJUNCTIONSk denote the class of conjunctions on at most k literals. Give an
algorithm that PAC-learns CONJUNCTIONSk and has sample complexity polynomial in
k, log n, 1

ε and 1
δ . What would be the sample complexity if you had used the algorithm

for learning CONJUNCTIONS discussed in the lectures?

Hint: First show that the weak learning algorithm in the previous part can be modified to
be a 1

10k -weak learner in this case.

3. Show that there does not exist a weak learning algorithm for PARITIES using H.

2 Teaching Dimension

We consider a new model of learning with the aid of a teacher. In this model, instead of receiving
examples randomly from a distribution, a teacher can provide examples that are most helpful
to a learner. Let X be a finite instance space. Given a concept class C and a target concept
c ∈ C, we say that a sequence T of labelled examples is a teaching sequence for c ∈ C, if c is
the only concept in C which is consistent with T . Let T (c) be the set of all teaching sequences
for c ∈ C. The teaching dimension of concept class C is then defined to be,

TD(C) = max
c∈C

min
T∈T (c)

|T |
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where |T | denotes the number of examples in the sequence T .

1. Give an example of a concept class C for which TD(C) > VCD(C).

2. Give an example of a concept class C for which TD(C) < VCD(C).

3. Show that for any concept class C, TD(C) ≤ |C| − 1.

4. Show that for any concept class C, TD(C) ≤ VCD(C) + |C| − 2VCD(C).

3 Learning MONOTONE-DNF is equivalent to learning DNF

The class MONOTONE-DNFn,s over {0, 1}n contains boolean functions that can be represented
as DNF formulae with at most s terms over n variables, and where each term only contains
positive literals. Then define,

MONOTONE-DNF =
⋃
n≥1

⋃
s≥1

MONOTONE-DNFn,s.

The class DNF is defined analogously, except that the literals in the terms may also be negative.
An efficient learning algorithm is allowed time polynomial in n, s, 1

ε and 1
δ . Show that if the

class MONOTONE-DNF is efficiently PAC-learnable, then so is DNF.

Remark: We have shown in the lectures that MONOTONE-DNF is efficiently exactly learn-
able using membership and equivalence queries, and hence also efficiently PAC-learnable using
membership queries (see Problem 4). On the other hand, there is no known algorithm for
PAC-learning DNF even when membership queries are allowed. In fact, under a suitable crypo-
tographic assumption, it has been shown that PAC-learning DNF with or without membership
queries is equivalent (Angluin and Kharitonov, 1991).

4 From Exact Learning to PAC Learning with Membership
Queries

Let C be a concept class that is exactly efficiently learnable using membership and equivalence
queries. We will consider the learnability of C in the standard PAC framework. Prove that if
in addition to access to the example oracle, EX(c,D), the learning algorithm is allowed to make
membership queries, then C is efficiently PAC-learnable. Formally, show that there exists a
learning algorithm that for all n ≥ 1, c ∈ Cn, D over Xn, 0 < ε < 1/2 and 0 < δ < 1/2, that
with access to the oracle EX(c,D) and the membership oracle for c and with inputs ε, δ and
size(c), outputs h that with probability at least 1− δ satisfies err(h) ≤ ε. The running time of
L should be polynomial in n, size(c), 1

ε and 1
δ and the h should be from a hypothesis class H

that is polynomially evaluatable.
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5 Learning Rectangles using Statistical Queries

We will consider an extension of the statistical query model, where in addition to making queries
of the form (χ, τ) to the oracle STAT(c,D), the learning algorithm is allowed access to unlabelled
examples from D, i.e., it may get points x ∈ X drawn according to D, but not the labels c(x).

1. Briefly argue why any concept that is (efficiently) learnable with access to STAT(c,D)
and unlabelled examples, is also (efficiently) learnable with access to the noisy example
oracle, EXη(c,D).

2. Give an efficient algorithm for learning rectangles in the plane using STAT(c,D) and
unlabelled examples.
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