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In the PAC learning framework, we receive labelled examples (z,c(x)), where x is drawn
from some distribution over the instance space X, and c¢(x) € {0,1} is the label. We have
focused on two different questions—the first regarding sample complexity asks how much data
is necessary and sufficient for learning, the second regarding computational complexity asks how
much computational power is necessary to run a learning algorithm. For sample complexity
questions, notions such as the VC dimension give an answer that is essentially tight, in that the
lower and upper bounds on sample complexity are quite close for general concept classes. When
considering the question of computational complexity, we make a distinction between proper
learning, where the learning algorithm is required to output a hypothesis from the concept
class that is being learnt, and improper learning, where the learning algorithm may output any
polynomially evaluatable hypothesis. For proper learning, we have already established that even
relatively simple concept classes such as 3-TERM-DNF are hard to PAC-learn unless RP = NP.
However, as we have seen it may be possible to learn these classes if the learning algorithm is
allowed to output hypotheses from larger classes. We have also established that the class of
log-depth circuits is not PAC-learnable under the discrete cube root assumption.

Today, we will consider a richer model of learning that allows the learning algorithm to be
more “active”. In addition to requesting random labelled examples from the target distribution
and concept, we’ll allow the learning algorithm to pick an instance x € X and request the
label c¢(x). We'll investigate this model in greater detail and show that there may be concept
classes that can be learnt under this more powerful model of learning, that are not (most likely)*
PAC-learnable.

1 Exact Learning with Membership and Equivalence Queries

WEe’ll consider learning algorithms that are allowed to make two different types of queries—
the first are membership queries or value queries and the second equivalence queries.? It is
convenient to define the model in terms of oracles, which may be queried by a learning algorithm.

Definition 1 (Membership (Value) Query Oracle). A membership (or value) query oracle,
MQ(c), when given input x € X returns the value c(x).

Next we define the equivalence oracle; this oracle takes as input (a representation of) h : X —
{0,1} and either agrees that h is identical to the target concept ¢, or returns a “counterexample”
x such that h(z) # c¢(x), a proof that ¢ and h are not equivalent. Formally, we define:

Definition 2 (Equivalence Oracle). An equivalence oracle, EQ(c), when given a representation
of a hypothesis, h : X — {0,1}, either returns “Yes” indicating that h and ¢ are equivalent as
boolean functions, or a counterexample x € X, such that c(x) # h(x).

We can now define learning with access to membership and equivalence query oracles. Unlike
the case of PAC-learning, we do not allow any failure probability, as there is no randomness in

!The reason we say most likely is that all hardness results we can establish are conditional. They require
assumptions such as the discrete cube root assumption or something else to establish their truth.

2The name membership query originated from the fact that boolean functions may be viewed as subsets of
the instance space; the instances that evaluate to 1 are members of the set and those that evaluate to 0 are not.
Querying the value of a boolean function at a point can be thought of as querying the membership of this point
in this set. The name value query is more suitable as it can be applied to non-boolean functions as well.



the data generation process, and we also do not allow any error at alll (It may make sense to
consider randomised algorithms and allow these to fail with some small probability; however,
for simplicity we’ll only discuss deterministic algorithms.)

Definition 3 (Exact Learning with MQ + EQ). We say that a concept class C is efficiently
learnable from membership and equivalence queries, if there exists a polynomial p(-,-) and a
learning algorithm L, such that for all n > 1, for all ¢ € C,, L when given access to the
oracles MQ(c) and EQ(c), and input size(c), halts in time p(n,size(c)) and outputs a hypothesis
hy + X5, — {0,1}, such that for each x € X,,, h(z) = c(x), i.e., h is equivalent to c.

In Section 2, we will show that the class of monotone DNF formulae is learnable when mem-
bership and equivalence queries are allowed. However, let us first comment about the suitability
of this framework as a mathematical model for machine learning. We could imagine that one
may be able to find expert human labellers to provide responses that count as membership
(value) queries. It is harder to argue that one can simulate an equivalence query oracle. In a
sense, this oracle can be treated as a mathematical convenience. In one of the problems on the
sheets, you are asked to show that any concept class that is exact learnable using membership
and equivalence query oracles, is PAC-learnable if the learning algorithm is also allowed acces to
the membership query oracle MQ(c), in addition to the example oracle EX(¢, D) in the standard
definition of PAC-learning.

2 Exact Learning MONOTONE-DNF using MQ + EQ

In this section, we show that the concept class MONOTONE-DNF that is not known to be PAC-
learnable is in fact exact learnable if membership and equivalence queries are allowed. A term is
a conjunction over the literals; we say that a term is monotone if the conjunction only contains
positive literals, i.e., literals that are variables (but not their negations). A monotone DNF
formula is a disjunction of monotone terms. The class MONOTONE-DNF consists of concepts
that can be expressed as monotone DNF formulae.

Let ¢ be a monotone DNF formula that contains s terms. Any term 7T; that is part of ¢ can
be associated with a subset S; C [n], i.e., T; = /\ xj. We assume that c is of the form that

jES;

it T; and T} are both terms of ¢, with S; and Sj- being the corresponding subsets of variables
appearing in them, then it is not the case that S; C S;. If it were the case, dropping 7} from ¢
would yield a formula that represents the same boolean function.

Alg. 1 presents an algorithm for learning MONOTONE-DNF using membership and equiva-
lence queries. We will prove the following theorem.

Theorem 4. The class MONOTONE-DNF is ezxactly learnable.

Proof. Let ¢ be the target monotone DNF formula. Let n denote the number of variables and
let s be the number of terms in ¢, where no term is redundant, i.e., there isn’t a term that
implies another. The learning algorithm is allowed running time that is polynomial in n and s.

We argue that every iteration of the while loop on Line 3 of Alg. 1 finds a term T that is
present in the target monotone DNF formula ¢, that we have not yet included in ¢. First, we
establish that if p(z) = 1 at any stage in the algorithm, then c¢(x) = 1. Clearly, it is the case
at the beginning of the algorithm; we’ll show that if it holds at the beginning of the while loop
(Line 3), then it continues to hold at the next iteration of the while loop.

Since, ¢(x) = 1 implies ¢(z) = 1, any counterexample a that establishes that ¢ # ¢ must be
such that c(a) = 1 and p(a) = 0. Let P = {i | T;(a) = 1} denote the indices of terms in ¢ that
are satisfied by a. As c¢(a) = 1, we know that P is non-empty. We claim that when the while
loop ends (Line 21), it is the case that exactly one ¢ in P is such that T;(a) = 1, where a is now
the updated assignment. Clearly, there is at least one such i (ensured by Lines 15, 16); if there



Algorithm 1 Learning MONOTONE-DNF using MQ + EQ oracles
1: Let p =0 > Always predict false
2: Let s =0 > Determine whether we have succeeded
3: while s =0 do
4: Let ans be the response of EQ(c) to query ¢

5 if ans = “Yes” then

6 s+1

T break

8 else

9: Let a = ans be the counterexample > It must be that ¢(a) =0 and c(a) =1
10: Let S={i|a; =1}

11: for j € S do

12: a <+ a

13: al <0

14: Let y be response to MQ(c) with query o
15: if y =1 then a + d

16: end if

17: end for

18: end if

19: T+ {i]|a =1}

20: p—pV /\ z;
JeET
21: end while

were two, say ¢ and 4/, then let j be the first index such that j € T; but j € Ty—setting a; = 0
would have continued to have T} satisfied and hence this is what would have happened after
Lines 15, 16. A similar argument also shows that all bits of a that could be 0 and still have a
be a satisfying assignment of some term 7; for ¢ € P, would have been set to 0. Thus, Line 21
finds a new term that appears in ¢, but not in ¢ and adds it to ¢. This also shows that at the
end of the while loop, it continues to be the case that ¢(x) = 1 implies ¢(a) = 1. Overall, a new
term can only be added s times to ¢, after which the algorithm has exactly identified c. O

Discusssion

One of the problems on the problem sheets also asks you to show that in the PAC-learning frame-
work (without the membership query oracle), learning DNF reduces to learning MONOTONE-DNF.
Currently, we know of no algorithm for learning either DNF or MONOTONE-DNF using only
random examples. In fact, Angluin and Kharitonov (1991) have shown that for learning DNF,
membership queries constitute no additional benefit, under a widely believed cryptographic as-
sumption. This suggests that allowing membership queries is powerful, in the sense that concept
classes that are probably not learnable in the PAC-setting without membership queries, become
learnable when membership queries are allowed, viz. the class MONOTONE-DNF.
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