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The following notes are based on Chapter 2 of Wolf [1].

1 Layered Feedforward Neural Nets

A ridge function f : Rd → R is given by f(x) = σ(w0 +
∑d

i=1wixi), where w0, . . . , wd ∈ R are weights and
σ : R→ R is a non-linear activation function. The following are some typical activation functions:

1. Step function σ = Iz≥0.

2. Logistic sigmoid σ(z) = 1
1+e−z .

3. Hyperbolic tangent σ(z) = tanh(z) = e2z−1
e2z+1

.

4. Rectified linear unit (ReLU) σ(z) = max(0, z).

Given positive integers d and m0, . . . ,md, a function f : Rm0 → Rmd is computed by a layered feedfor-
ward neural network with d− 1 hidden layers and activation function σ if we can write

f = gd ◦ σmd−1 ◦ gd−1 ◦ · · · ◦ σm1 ◦ g1

where gi : Rmi−1 → Rmi is an affine map for i = 1, . . . , d and, for all m ∈ N, σm : Rm → Rm is defined
by applying σ pointwise. Note that each map gi can be written in the form gi(x) = W (i)x + w(i) for W (i)

an mi ×mi−1 weight matrix and w(i) a mi-dimensional vector of biases. We refer to [1] for a presentation of
neural networks as layered directed weighted graphs.

2 Expressiveness

In this section we show how a feedforward neural network with a single hidden layer can approximate continu-
ous functions on compact subsets of Rd. We work under the simplifying assumption that the activation function
is bounded and such that limx→−∞ σ(x) and limx→+∞ σ(x) both exist and are distinct. This assumption ap-
plies to the logistic sigmoid and hyperbolic tangent functions. We refer to [1] for an argument that works in
case σ is merely continuous and not equal to a polynomial (e.g., the ReLU activation function).

Our starting point is the following result, which essentially says that the class of feedforward neural nets
with a single hidden layer and the exponential function as activation function can approximate continuous
functions on compact sets.

Given a compact set K ⊆ Rd, we write C(K) for the set of continuous functions K → R.

Proposition 1. Let K ⊆ Rd be a compact set for some d ∈ N. Then the algebra

E = span
{
f : K → R : f(x) = exp

(∑d
i=1wixi

)
, w ∈ Rd

}
is dense in C(K) with respect to the norm ‖ · ‖∞.
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Proof. Note that E is indeed an R-algebra (i.e., it is closed under pointwise products and R-linear sums). The
result now follows from the Stone-Weierstrass Theorem, which states that any subalgebra ofC(K) that contains
a non-zero constant function and separates points (i.e., such that for all x 6= y ∈ K there exists f ∈ E such
that f(x) 6= f(y)) is dense in C(K) with respect to ‖ · ‖∞. Separation of points is clear in the case at hand: if
x 6= y ∈ K then setting w = x− y we have that ewx 6= ewy.

The idea in the rest of the section is to show how to approximate the exponential function exp : R→ R by
a neural net with a single hidden layer, using only the above-stated assumptions on the activation function.

Let Fm be the set of functions R → R that can be represented by a feedforward neural network with a
single hidden layer containing m neurons with σ as activation function. Formally we have

Fm =

{
f : R→ R : f(x) =

m∑
i=1

aiσ(wix+ bi), ai, bi, wi ∈ R

}
.

Proposition 2. Let I ⊆ R be a closed bounded interval. Then there exists a constant c such that for every
L-Lipschitz function f : I → R and all m ∈ N we have

inf
g∈Fm

‖f − g‖∞ ≤ c
(
L

m

)
.

Proof. We give the proof in the case that I = [0, 1], limx→−∞ σ(x) = 0, and limx→+∞ σ(x) = 1. These
assumptions simplify the details, but the same argument works in the general case.

The idea is to approximate f by a step function g and then to approximate g by a function h ∈ Fm. To this
end, write xi := i/m for i = 0, 1, . . . ,m and define g : [0, 1] → R by g(x) = f(xi) for all x ∈ [xi−1, xi).
Clearly ‖f − g‖∞ ≤ L

m .
To motivate the definition of the function h, notice that for all x ∈ [0, 1] we have

g(x) = f(x1) +

bmxc∑
i=1

(f(xi+1)− f(xi))

= f(x1) +

m−1∑
i=1

(f(xi+1)− f(xi))Ii≤bmxc .

We are thus led to define

h(x) := f(x1) +
m−1∑
i=1

(f(xi+1)− f(xi))σ(α(mx− i)) ,

for some “large” constant α ∈ R to be chosen momentarily. Notice that h ∈ Fm, as desired.
Fix ε > 0 and choose α > 0 such that |1 − σ(z)| ≤ ε for all z ≥ α and |σ(z)| ≤ ε for all z ≤

−α. Fix x ∈ [0, 1] and write i0 := bmxc Then if i 6∈ {i0, i0 + 1} we have that |mx − i| ≥ 1 and hence
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|σ(α(mx− i))− Ii≤bmxc| ≤ ε. It follows that

|g(x)− h(x)| ≤ ε(m− 3)
L

m
+ |f(xi0+1)− f(xi0)| |1− σ(α(mx− i0))|
+ |f(xi0+2)− f(xi0+1)| |σ(α(mx− i0 − 1))|

≤ εL+ (‖σ‖∞ + 1)
L

m
.

Since ε can be chosen arbitrarily small the result holds.

Theorem 3. Let d ∈ N and K ⊆ Rd be compact. Given a given continuous function f : K → R, we can
approximate f can arbitrarily closely with respect to ‖·‖∞ by feedforward neural networks with a single hidden
layer.

Proof. Given f : K → R we first approximate f by exponentials and then approximate the exponentials by
linear combinations of ridge functions.

By Proposition 1, for every ε > 0 there exists k ∈ N, a set of vectors v1, . . . , vk ∈ Rd, and a weight vector
s ∈ Rk such that the function g : Rd → R defined by g(x) :=

∑k
i=1 sie

vi·x satisfies ‖f − g‖∞ ≤ ε/2.

Define K1 :=
⋃k
i=1{vi · x : x ∈ K} and note that K1 is a compact subset of R. By Proposition 2 (noting

that exp is Lipschitz on some bounded interval containing K1) there exist ` ∈ N and real numbers aj , wj , bj
for j = 1, . . . , ` such that ∣∣∣ey −∑`

j=1 ajσ(wjy − bj)
∣∣∣ ≤ ε

2‖s‖1
for all y ∈ K1.

Now given x ∈ K, we have∣∣∣f(x)−∑k
i=1

∑`
j=1 siajσ(wjvi · x− bj)

∣∣∣
=
∣∣∣f(x)−∑k

i=1 sie
vix +

∑k
i=1 sie

vix −
∑k

i=1

∑`
j=1 siajσ(wjvi · x− bj)

∣∣∣
≤

∣∣∣∣∣f(x)−
k∑
i=1

sie
vi·x

∣∣∣∣∣+
k∑
i=1

|si|

∣∣∣∣∣∣ey −
∑̀
j=1

ajσ(wjy − bj)

∣∣∣∣∣∣
≤ ε

2
+ ‖s‖1

ε

2‖s‖1
= ε .

3 Deeper Networks Can Be Exponentially More Succinct

Given the results of Section 2, one may wonder why to consider neural networks with more than one hid-
den layer. In this section we give a simple example in which adding depth to a neural network achieves an
exponential gain in succinctness. Throughout this section we work with the rectified linear activation function.
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Let F(`,m) be the class of functions R→ R that can be represented by feedforward neural networks with
` layers and m neurons per hidden layer.

Given f ∈ F(`,m), define as associated classifier f̃ : R → {0, 1} by f̃(x) = If(x)≥1/2. Given a finite set
S ⊆ R× {0, 1}, the empirical risk of f on S is

R̂S(f) :=
1

|S|
∑

(x,y)∈S

I
f̃(x) 6=y .

Theorem 4. Let k ∈ N and n = 2k. Define S := {(xi, yi) : i = 0, . . . , n−1}with xi = i/n and yi = i mod 2.
Then

1. There exists f ∈ F(2k, 2) such that R̂S(f) = 0.

2. For every f ∈ F(`,m) with m ≤ 2
k−1
`
−1, we have R̂S(f) ≥ 1/4.

Proof. Define g(x) = σ(2σ(x)− 4σ(x− 1
2)). Then

g(x) =


0 if x 6∈ [0, 1]
2x if x ∈ [0, 1/2]
1− 2x if x ∈ [1/2, 1].

Furthermore, write f := g ◦ · · · ◦ g︸ ︷︷ ︸
k

(see [1] for the graph of f ). Then f ∈ F(2k, 2) and f(xi) = yi for

i = 0, . . . , n− 1 and hence R̂S(f) = 0.
On the other hand consider f ∈ F(`,m). We claim that such an f is piecewise affine, with at most t :=

(2m)` pieces. This claim can be proved by induction on `. The induction step follows by the following claim.
Claim. If f1, . . . , fm : R → R are each piecewise affine with at most p pieces, then given w0, . . . , wm ∈ R
the function g(x) := σ(w0 +

∑m
i=1wifi(x)) is piecewise affine with at most 2mp pieces. To prove the claim

one notes that there are at most m(p− 1) endpoints of the intervals defining the pieces of f1, . . . , fm and hence
x 7→ w0+

∑m
i=1wifi is piecewise affine (and hence piecewise monotone) with at most mp pieces. By splitting

each of these pieces into at most two parts one obtains a decomposition of R into at most 2mp pieces such that
g is affine on each piece.

Since f ∈ F(`,m) is piecewise monotone with at most t pieces, it crosses the line y = 1/2 at most t times.
Hence f̃ is piecewise constant with at most t + 1 pieces. It follows that there are at least n−t−12 consecutive

pairs of points in S that both lie in an interval in which f̃ is constant. By the assumption m ≤ 2
k−1
`
−1, we have

t/2−1
2n ≤ 1

4 . We conclude that

R̂S(f) ≥
n− t− 1

2n
=

1

2
− t/2− 1

2n
≥ 1

4
.

4 Rademacher Complexity of Neural Networks

We first recall a bound on the Rademacher complexity of classes of linear functions. Then we combine this anal-
ysis with general properties of Rademacher complexity to bound the Rademacher complexity of feedforward
neural networks by induction on the number of layers.
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Let H ⊆ RX be a class of functions. Recall that the empirical Rademacher complexity of H with respect
to S = (x1, . . . , xn) ∈ X n is

R̂ADS(H) = Eσ

[
sup
h∈H

1

n

n∑
i=1

σih(xi)

]
where the Rademacher random variables σi are independent and uniformly distributed over {−1,+1}.

We recall the following properties of Rademacher complexity, where H,H1,H2 are subsets of RX and
conv(H) denotes the convex hull ofH:

1. R̂ADS(cH) = |c|R̂ADS(H) for c ∈ R.

2. R̂ADS(H1 +H2) = R̂ADS(H1) + R̂ADS(H2).

3. R̂ADS(conv(H)) = R̂ADS(H).

4. Talagrand’s Lemma: if ϕ : R→ R is L-Lipschitz R̂ADS(ϕ ◦ H) ≤ L · R̂ADS(H).

In the rest of this section let X = {x ∈ Rd : ‖x‖∞ = 1}.

Proposition 5 (Rademacher complexity of linear maps). Given b > 0, define G ⊆ RX by G = {x 7→ x · w :

‖w‖1 ≤ b}. Then for S ∈ X n we have R̂ADS(G) ≤ b√
n

.

Proof. See the lecture on Rademacher complexity.

Proposition 6 (Adding a layer). Let a, b ∈ R and let σ : R → R be L-Lipschitz. Suppose that F ⊆ RX
contains the zero function and satisfies F = −F . Define G ⊆ RX by

G := {x 7→ σ(w0 +
∑m

i=1wjfj(x)) : |w0| ≤ a, ‖w‖1 ≤ b, fj ∈ F} .

With respect to S = {x1, . . . , xn} ∈ X n we have

R̂ADS(G) ≤ L
(
a√
n
+ bR̂ADS(F)

)
.

Proof. Define G1 := bconv(F) and G2 := {x 7→ w0 : |w0| ≤ a}. Then

R̂ADS(G2) =
a

n
Eσ[|σ1 + · · ·+ σn|]

≤ a

n

(
Eσ[(σ1 + · · ·+ σn)

2]
)1/2 Jensen’s inequality

=
a√
n
.

By the assumptions that 0 ∈ F and F = −F , we have that{
x 7→

m∑
i=1

wjfj(x)) : ‖w‖1 ≤ b, fj ∈ F

}
= b conv(F) .

Then from Properties 1,3 of R̂ADS we have R̂ADS(G1) = b R̂ADS(H).
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We conclude that

R̂ADS(G) ≤ L(R̂ADS(G1 + G2)) by Talagrand’s Lemma

= L(R̂ADS(G1) + R̂ADS(G2)) by Property 2 of R̂ADS .

≤ L

(
a√
n
+ bR̂ADS(F)

)
.

Theorem 7. Let a, b > 0. Fix a neural network architecture with ` ≥ 1 layers and assume that (i) the activation
function σ is 1-Lipschitz and anti-symmetric (σ(−x) = −σ(x)), (ii) the weight vector w and bias v for every
at every node in the network satisfies ‖w‖1 ≤ b and |v| ≤ a. Then the class of functions F ⊆ RX defined by
such a network satisfies

R̂ADS(F) ≤
1√
n

(
b` + a

`−2∑
i−0

bi

)
.

Proof. The theorem follows by a straightforward induction on the number ` of layers. The base case ` = 1
reduces to the bound on the Rademacher complexity of linear classifiers in Proposition 5. The induction step
uses Proposition 6. Note that thanks to the requirement that σ be anti-symmetric the set of functions computed
at each node of the neural network satisfies the assumptions of Proposition 6.

Note that the above bound has an exponential dependence on the number of layers.
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