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Neural Nets

James Worrell

The following notes are based on Chapter 2 of Wolf [[1].

1 Layered Feedforward Neural Nets

A ridge function f : R? — R is given by f(z) = o(wo + Zgzl w;z;), where wo, ..., wy € R are weights and
o : R — R is a non-linear activation function. The following are some typical activation functions:

1. Step function o = I,>¢.
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2. Logistic sigmoid 0 (2) = 1 —.

e2z—1

3. Hyperbolic tangent o(z) = tanh(z) = 5:77.

4. Rectified linear unit (ReLU) o(z) = max(0, z).

Given positive integers d and my, . . . ,mg, a function f : R0 — R™d is computed by a layered feedfor-
ward neural network with d — 1 hidden layers and activation function ¢ if we can write

f=gqo0c™logg10---00™ o

where g; : R™i-1 — R™ is an affine map for< = 1,...,d and, for all m € N, ¢ : R™ — R is defined
by applying o pointwise. Note that each map g; can be written in the form g;(xz) = W®z + w for W
an m; X m;_y weight matrix and w@ a my;-dimensional vector of biases. We refer to [1]] for a presentation of
neural networks as layered directed weighted graphs.

2 Expressiveness

In this section we show how a feedforward neural network with a single hidden layer can approximate continu-
ous functions on compact subsets of R%. We work under the simplifying assumption that the activation function
is bounded and such that lim,_, , o(x) and lim,_,, » o(x) both exist and are distinct. This assumption ap-
plies to the logistic sigmoid and hyperbolic tangent functions. We refer to [1] for an argument that works in
case o is merely continuous and not equal to a polynomial (e.g., the ReLU activation function).

Our starting point is the following result, which essentially says that the class of feedforward neural nets
with a single hidden layer and the exponential function as activation function can approximate continuous
functions on compact sets.

Given a compact set K C R4, we write C (K) for the set of continuous functions K — R.

Proposition 1. Let K C R? be a compact set for some d € N. Then the algebra
&= span{f K = R: f(x) =exp (Z?:l wixi) , W E Rd}

is dense in C'(K) with respect to the norm || - || .



Proof. Note that £ is indeed an R-algebra (i.e., it is closed under pointwise products and R-linear sums). The
result now follows from the Stone-Weierstrass Theorem, which states that any subalgebra of C'(K) that contains
a non-zero constant function and separates points (i.e., such that for all z # y € K there exists f € £ such
that f(z) # f(y)) is dense in C'(K') with respect to || - ||~. Separation of points is clear in the case at hand: if
x # y € K then setting w = x — y we have that " # ¢"¥. O

The idea in the rest of the section is to show how to approximate the exponential function exp : R — R by
a neural net with a single hidden layer, using only the above-stated assumptions on the activation function.

Let F;, be the set of functions R — R that can be represented by a feedforward neural network with a
single hidden layer containing m neurons with ¢ as activation function. Formally we have

Fm —{f R—=R: f(z Zal (wiz + b;), az,bz,wzeR}

=1

Proposition 2. Let I C R be a closed bounded interval. Then there exists a constant ¢ such that for every
L-Lipschitz function f : I — R and all m € N we have

L
inf = glleo < — .
1 gl e ()

Proof. We give the proof in the case that [ = [0, 1], lim,; oo o(x) = 0, and lim;_, o o(x) = 1. These
assumptions simplify the details, but the same argument works in the general case.

The idea is to approximate f by a step function g and then to approximate g by a function i € F,,,. To this
end, write z; := i/m fori = 0,1,...,m and define g : [0,1] — R by g(z) = f(z;) forall x € [z;_1,z;).
Clearly [|f — gllee < 7.

To motivate the definition of the function A, notice that for all € [0, 1] we have

Lmaz]

g(x) = f(z1)+ Z (f(zit1) — f(xi))

We are thus led to define
m—1
h(z) := f(x1) + Z (ig1) — f(x))o(a(mz — 1)),
i=1
for some “large” constant a € R to be chosen momentarily. Notice that h € F,,, as desired.

Fix ¢ > 0 and choose o > 0 such that |1 — o(z)] < e forall z > « and |0(z)] < e for all z <
—a. Fix x € [0,1] and write ip := |ma] Then if i &€ {ip,io + 1} we have that [ma — | > 1 and hence



lo(a(mz — 1)) — Li<|ma)| < €. It follows that

l9(2) — h(a)] <e(m —3)~
+ [ f(@ig+1) — f(@ip)| [1 = o(a(mz —io))|
+ 1 f(@ig+2) = f(@ig+1)] o (a(ma — ig — 1))

L
<el+([lofloo +1)—.
m

Since € can be chosen arbitrarily small the result holds. O

Theorem 3. Let d € N and K C R? be compact. Given a given continuous function f : K — R, we can
approximate f can arbitrarily closely with respect to || ||~ by feedforward neural networks with a single hidden
layer.

Proof. Given f : K — R we first approximate f by exponentials and then approximate the exponentials by
linear combinations of ridge functions.

By Proposition for every € > 0 there exists k € N, a set of vectors vy, ..., v, € R? and a weight vector
s € R¥ such that the function g : R? — R defined by g(z) := Zle sieV* satisfies || f — g|loo < €/2.

Define K7 := Ule{vi -z : x € K} and note that K is a compact subset of R. By Proposition (noting
that exp is Lipschitz on some bounded interval containing K1) there exist / € N and real numbers a;, w;, b;

for j =1,...,£ such that
€

2||sllx

¢
e =3 j=1 450 (wiy — bj)‘ =

forally € K;.
Now given z € K, we have

’f(x) — Yy Yy siajo(wjv - x — bj)‘

= )f () = S0y sie™® + 300y sievi® — YO S siajo(wyvg - — by)

k k l
< 'f(l‘)—zsz'e“” + ) lsil eV = > ajo(wiy — b))
i=1 i=1 j=1
= sl
>~ = 1
2 2IJ3]]
= €.

3 Deeper Networks Can Be Exponentially More Succinct

Given the results of Section [2] one may wonder why to consider neural networks with more than one hid-
den layer. In this section we give a simple example in which adding depth to a neural network achieves an
exponential gain in succinctness. Throughout this section we work with the rectified linear activation function.



Let F (¢, m) be the class of functions R — R that can be represented by feedforward neural networks with
¢ layers and m neurons per hidden layer.

Given f € F (¢, m), define as associated classifier f:R— {0,1} by f(x) = I ¢(z)>1/2. Given a finite set
S C R x {0, 1}, the empirical risk of f on S is

~ 1
Bs(f) =15 2 Y-
(z,y)es

Theorem 4. Let k € Nand n = 2*. Define S := {(2;,%) :i =0,...,n—1} witha; = i/nand y; = i mod 2.
Then

1. There exists f € F(2k,2) such that ﬁg(f) =0.
2. Forevery f € F(¢,m) with m < 271, we have Rs(f) > 1/4.
Proof. Define g(z) = 0(20(2) — 40(x — 3)). Then

0 ifz ¢ [0,1]
g(z) =¢ 2z if x € 0,1/2]
1-2¢ ifze(1/2,1]

Furthermore, write f := go---og (see [1] for the graph of f). Then f € F(2k,2) and f(x;) = y; for
—_—

k
1=0,....,n—1 andhenceﬁg(f) =0.

On the other hand consider f € F (¢, m). We claim that such an f is piecewise affine, with at most ¢ :=
(2m)* pieces. This claim can be proved by induction on £. The induction step follows by the following claim.
Claim. If fi,..., f,, : R — R are each piecewise affine with at most p pieces, then given wy, ..., w, € R
the function g(z) := o(wo + Y i, w;ifi(x)) is piecewise affine with at most 2mp pieces. To prove the claim
one notes that there are at most m(p — 1) endpoints of the intervals defining the pieces of f1, ..., f,,, and hence
x — wo+ Y i, w;f; is piecewise affine (and hence piecewise monotone) with at most mp pieces. By splitting
each of these pieces into at most two parts one obtains a decomposition of R into at most 2mp pieces such that
g is affine on each piece.

Since f € F({, m) is piecewise monotone with at most ¢ pieces, it crosses the line y = 1/2 at most ¢ times.

Hence f is piecewise constant with at most ¢ 4+ 1 pieces. It follows that there are at least ”_TH consecutive

pairs of points in S that both lie in an interval in which fis constant. By the assumption m < 2%—1, we have
t/;; L < %. We conclude that
5 n—t—1 1 ¢/2—-1_1
R > 0 - S L
s(f) =z — -2
0

4 Rademacher Complexity of Neural Networks

We first recall a bound on the Rademacher complexity of classes of linear functions. Then we combine this anal-
ysis with general properties of Rademacher complexity to bound the Rademacher complexity of feedforward
neural networks by induction on the number of layers.



Let H C R¥ be a class of functions. Recall that the empirical Rademacher complexity of H with respect

toS = (x1,...,2,) € X™is
1 n
sup — oih(x;

RADs(H) = E,

where the Rademacher random variables o; are independent and uniformly distributed over {—1, +1}.

We recall the following properties of Rademacher complexity, where H,H1, M2 are subsets of R and
conv(H) denotes the convex hull of #:

1. mg(c’}-{) = |c[§°\\DS(”H) forc € R.

2. RADg(H1 + Ha) = RADg(H1) + RADg(Ha).

3. RADg(conv(#)) = RADg(H).

4. Talagrand’s Lemma: if ¢ : R — R is L-Lipschitz R/A\Ds(go oH) < L- R/A\DS(H)
In the rest of this section let X = {z € R? : ||z]|oc = 1}.

Proposition 5 (Rademacher complexity of linear maps). Given b > 0, define G C R* by G = {z > 2 - w :

|w|ly < b}. Then for S € X™ we have RADg(G) < %

Proof. See the lecture on Rademacher complexity. O

Proposition 6 (Adding a layer). Let a,b € R and let 0 : R — R be L-Lipschitz. Suppose that ¥ C R*
contains the zero function and satisfies 7 = —F. Define G C R¥ by

G = {x = o(wo+ > 1" wifj(x)) : [wol < a, [|wl1 <b, fj € F}.

With respect to S = {z1,...,2,} € X" we have

RADs(G) < L <;ﬁ + bR/A\DS(]-")> .

Proof. Define G; := bconv(F) and Gy := {x — wy : |wg| < a}. Then

RADs(G2) = “Egflot+--+ ol
< ¢ (Eol(o1 + -+ 0,1)2])1/2 Jensen’s inequality
"a
= 5

By the assumptions that 0 € F and F = —F, we have that
m

{w =Y wifi(x) s wll < b, f € f} = beonv(F).
i=1

Then from Properties 1,3 of RADg we have R/ms(gl) =b R/A\DS(’H)



We conclude that

—

R/A\Dg(g) < L(RADg(G1 + G2)) by Talagrand’s Lemma
= L(R/A\Ds(gl) + R//AT)S(QQ)) by Property 2 of ﬂ\Ds.

L (\jﬁ bR/A\Dg(}")> .

IN

O

Theorem 7. Let a,b > 0. Fix a neural network architecture with £ > 1 layers and assume that (i) the activation
function o is 1-Lipschitz and anti-symmetric (o(—x) = —o(x)), (ii) the weight vector w and bias v for every
at every node in the network satisfies ||w|[; < b and |v| < a. Then the class of functions F C R* defined by

such a network satisfies s
— 1 — .
RADs(F) < — b 4a) b | .

Proof. The theorem follows by a straightforward induction on the number ¢ of layers. The base case ¢ = 1
reduces to the bound on the Rademacher complexity of linear classifiers in Proposition [5] The induction step
uses Proposition[6] Note that thanks to the requirement that o be anti-symmetric the set of functions computed
at each node of the neural network satisfies the assumptions of Proposition [6] O

Note that the above bound has an exponential dependence on the number of layers.
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