
Computational
Learning Theory

(Lecture Notes)

1
ε

1
δ

n
size(c)

Varun Kanade

Contents

Contents i

Preface iii

1 Probably Approximately Correct Learning 1
1.1 A Rectangle Learning Game . 1
1.2 Key Components of the PAC Learning Framework 4
1.3 Learning Conjunctions . 8
1.4 Hardness of Learning 3-term DNF 12
1.5 Learning 3-CNF vs 3-TERM-DNF 15
1.6 PAC Learning . 16
1.7 Exercises . 17
1.8 Chapter Notes . 19

2 Consistent Learning and Occam’s Razor 21
2.1 Occam’s Razor . 21
2.2 Consistent Learning . 22
2.3 Improved Sample Complexity 23
2.4 Exercises . 24

A Useful Inequalities from Probability Theory 27
A.1 The Union Bound . 27
A.2 Hoeffding’s Inequality . 27

B Useful Inequalities 29
B.1 Convexity of exp . 29

C Notation 31
C.1 Basic Mathematical Notation 31
C.2 The PAC Learning Framework 31

Bibliography 33

Index 35

i

Preface

What is computational learning theory?

Machine learning techniques lie at the heart of many technological applications
that are used on a daily basis. When using a digital camera, the boxes that
appear around faces are produced using a machine learning algorithm. When
streaming portals such as BBC iPlayer or Netflix suggest what a user might
like to watch next, they are also using machine learning algorithms to provide
these recommendations. In fact, more likely than not, any substantial technol-
ogy that is in use these days has some component that uses machine learning
techniques.

The field of (computational) learning theory develops precise mathematical
formulations of the more vague notion of learning from data. Having precise
mathematical formulations allows one to answer questions such as:

(i) What types of functions are easy to learn?
(ii) Are there types of functions that are hard to learn?
(iii) How much data is required to learn a function of a particular type?
(iv) How much computational power is needed to learn certain types of func-

tions?

Positive as well as negative answers to these questions are of great interest.
For example, one of the key considerations is to design and analyse learning
algorithms that are guaranteed to learn certain types of functions using modest
amount of data and reasonable runnning time. For the most part, we will take
the view that as long as the resources used can be bounded by a polynomial
function of the problem size, the learning algorithm is efficient. Obviously, as
is the case in the analysis of algorithms, there may be situations where just
being polynomial time may not be considered efficient enough; the existence of
polynomial-time learning algorithms is however a good first step in separating
easy and hard learning problems. Some of the algorithms we study will not
run in polynomial time at all, but they will still be much better than brute
force algorithms.

There is a vast body of literature that is often called Statistical Learning
Theory. To some extent this distinction between statistical and computational
learning theory is rather artificial and we shall make use of several concepts in-
troduced in that theory such as VC dimension and Rademacher complexity. In
this course, greater emphasis will be placed on computational considerations.
Research in computational learning theory has uncovered interesting phenom-
ena such as the existence of certain types of functions that can be learnt if

iii

iv PREFACE

computational resources are not a consideration, but cannot be learnt in poly-
nomial time. Other examples demonstrate a tradeoff between the amount of
data and the algorithmic running time, i.e. the running time of the algorithm
can be reduced by using more data. More importantly, placing the question of
learning in a clear computational framework allows one to reason about other
kinds of (computational) resources such as memory, communication, privacy,
etc. that may be a consideration for the learning problem at hand.

Chapter 1

Probably Approximately Correct
Learning

Our goal in this chapter is to gradually build up the probably approximately
correct (PAC) learning framework while emphasizing the key components of
the learning model. We will discuss various model choices in detail; the ex-
ercises and some results in later chapters explore the robustness of the PAC
learning framework to slight variants of these design choices. As the goal of
computational learning theory is to shed light on the phenomenon of automated
learning, such robustness is of key importance.

1.1 A Rectangle Learning Game

Let us consider the following rectangle learning game. We are given some points
in the Euclidean plane, some of which are labeled positive (+) and others
negative (−). Furthermore, we are guaranteed that there is an axis-aligned
rectangle such that all the points inside it are labelled positive, while those
outside are labelled negative. However, this rectangle itself is not revealed
to us. Our goal is to produce a rectangle that is “close” to the true hidden
rectangle that was used to label the observed data (see Fig. 1.1(a)).

Although the primary purpose of this example is pedagogic, it may be
worth providing a scenario where such a (fake) learning problem may be rel-
evant. Suppose that the two dimensions measure the curvature and length of
bananas. The points that are labelled positive have medium curvature and
medium length and represent the bananas that would pass “stringent” EU reg-
ulations. However, the actual lower and upper limits that “define” medium in
each dimension are hidden. Thus, we wish to learn some rectangle that will be
good enough to predict whether bananas we produce would pass the regulators’
tests or not.

Let R be the unknown rectangle used to label the points. We can express the
labelling process using a boolean function cR : R2 → {+,−}, where cR(x) = +,
if x is inside the rectangle R and cR(x) = −, otherwise.1

1We refer to functions whose range has size at most 2 as boolean functions. From the point
of view of machine learning, the exact values in the range are unimportant. We will frequently
use {+,−}, {0, 1} and {−1, +1} as the possible options for the range depending on the context
(and at times make rather unintuitive transformations between these possibilities).

1

2 CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

+
++

+
−

−

−

−

−

−

R

(a)

+
++

+
−

−

−

−

−

−

R

R′

(b)

+
++

+
−

−

−

−

−

−

R

R′T1

T2

T3

T4

(c)

+
++

+
−

−

−

−

−

−

R

R′T1

T2

T3

T4

(d)

Figure 1.1: (a) Data received for the rectangle learning game. The rectangle R
used to generate labels is hidden from the learning algorithm. (b) The tightest
fit algorithm produces a rectangle R′. (c) & (d) The regions T1, T2, T3 and T4
contain ε/4 mass each under D (for two different distributions D).

Let us consider the following simple algorithm. We consider the tightest
possible axis-aligned rectangle that can fit all the positively labelled data inside
it; let us denote this rectangle by R′ (Fig. 1.1(b)). Our prediction function or
hypothesis hR′ : R2 → {+,−} is the following: if x ∈ R′, hR′(x) = +, else
hR′(x) = −.2 Let us consider the following questions:

– Have we learnt the function cR ?
– How good is our prediction function hR′?

Let R denote the true rectangle that actually defines the labelling function
cR. Since we’ve chosen the tightest possible fit, the rectangle R′ must be
entirely contained inside R. Consider the shaded region shown in Fig. 1.1(b).
For any point x that is in this shaded region, it must be that hR′(x) = −, while
cR(x) = +. In other words, our prediction function hR′ would make errors on
all of these points. If we had to make predictions on points that mostly lie in
this region our hypothesis would be quite bad. This raises an important point
that the data that is used to learn a hypothesis should be similar to the data
on which the hypothesis will be tested. We will now formalise this notion.

Let D be a probability distribution over R2; in the ensuing discussion, we
will assume that D can be expressed using a density function that is defined

2For the sake of concreteness, let us say that points on the sides are considered to be
inside the rectangle.

1.1. A RECTANGLE LEARNING GAME 3

While no knowledge of machine learning is required to complete this
course, it would of course be helpful to make connections with the tech-
niques and terminology in machine learning. This discussion appears
in coloured boxes and can be safely ignored for those uninterested in
applied machine learning.

In machine learning, one makes the distinction between the training
and test datasets; when done correctly the empirical error on the test
dataset would give an unbiased estimate of what we refer to as error in
Eqn. (1.1). In machine learning it is also common to use a validation set;
this is often done because multiple models are trained on the training
set (possibly because of hyperparameters) and one of them needs to be
picked. Picking them using their performance on the training set may
result in overfitting. In this course, we will adopt the convention that
model selection is also part of the learning algorithm and not make a
distinction between the training and validation sets. (For example, see
Exercise 1.3.)

over all of R2 and is continuous.3 The training data consists of m points that
are drawn independently according to D and then labelled according to the
function cR. We will define the error of a hypothesis hR′ with respect to the
target function cR and distribution D as follows:

err(hR′ ; cR, D) = Px∼D
[
hR′(x) 6= cR(x)

]
(1.1)

Whenever the target cR and distribution D are clear from context, we will
simply refer to this as err(hR′).

We will now show that in fact our algorithm outputs an hR′ that is quite
good, in the sense that given any ε > 0 as the target error, with high probability
(at least 1 − δ), given a sufficiently large training sample, it will output hR′

such that err(hR′ ; cR, D) ≤ ε. Consider four rectangular strips T1, T2, T3, T4
that are chosen along the sides of the rectangle R (and lying inside R) such
that the probability that a random point drawn according to D lands in some
Ti is exactly ε/4.4 Note that some of these strips overlap, e.g. T1 and T2 (see
Fig. 1.1(c)). The probability that a point drawn randomly according to D lies
in the set T1∪T2∪T3∪T4 is at most ε (a fact that can be proved formally using
the union bound (cf. Appendix A.1)). If we can guarantee that the training
data of m points contains at least one point from each of T1, T2, T3 and T4,
then the tightest fit rectangle R′ will be such that R \R′ ⊂ T1 ∪ T2 ∪ T3 ∪ T4,
and as a consequence, err(hR′ ; cR, D) ≤ ε. This is shown in Fig. 1.1(c); note
that if even one of the Ti do not contain any point in the data, this may cause
a problem, in the sense that the region of disagreement between R and R′ may
have probability mass greater than ε (see Fig. 1.1(d)).

Let A1 be the event that when m points are drawn independently according
to D, none of them lies in T1. Similarly, define the events A2, A3, A4 for

3This assumption is not required; in the exercises you are asked to show how the assump-
tion can be removed.

4Assuming that the distribution D can be expressed using a continuous density function
that is defined over all of R2, such strips always exist. Otherwise, the algorithm is still
correct, however, the analysis is slightly more tedious and is left as Exercise 1.1.

4 CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

T2, T3, T4. Consider the event E = A1 ∪ A2 ∪ A3 ∪ A4. If E does not occur,
then we have already argued that err(hR′ ; cR, D) ≤ ε. We will use the union
bound to bound P [E] (cf. Appendix A.1). To begin, let us compute P [A1].
The probability that a single point drawn according to D does not land in T1 is
exactly 1−ε/4; so the probability that afterm independent draws fromD, none
of the points are in T1 is

(
1− ε

4
)m. By a similar argument, P [Ai] =

(
1− ε

4
)m

for i = 1, . . . , 4. Thus, we have

P [E] ≤
4∑
i=1

P [Ai] The Union Bound (A.1).

= 4
(

1− ε

4

)m
≤ 4 exp

(
−mε4

)
. As 1− x ≤ e−x (B.1).

For any δ > 0, picking m ≥ 4
ε log

(4
δ

)
suffices to ensure that P [E] ≤ δ. In

other words, with probability at least 1− δ, err(hR′ ; cR, D) ≤ ε.
A couple of remarks are in order. We should think of ε as being the accuracy

parameter and δ being the confidence parameter. The bound m ≥ 4
ε log

(4
δ

)
suggests that as we demand higher accuracy (smaller value of ε) and higher
confidence (smaller value of δ) of our learning algorithm, we need to supply
more data.5 This is indeed a reasonable requirement. Furthermore, the cost
of achieving higher accuracy and higher confidence is relatively modest. For
example, if we want to halve the error while keeping the confidence parameter
constant, say go from ε = 0.02 to ε = 0.01, the amount of data required (as
suggested by the bound) only doubles.6

1.2 Key Components of the PAC Learning Framework

We will use the insights gleaned from the rectangle learning game to develop key
components of a mathematical framework for automatic learning from data.
First let us make a few observations:

1. The learning algorithm does not know the target concept to be learnt (obvi-
ously, otherwise there is nothing to learn!). However, the learning algorithm
does know the set of possible target concepts. In the rectangle learning
game, the unknown target is always an axis-aligned rectangle.

2. The learning algorithm has access to data drawn from some distribution
D. We do assume that the observations are drawn independently according
to D. However, no assumption is made on the distribution D itself. This
reflects the fact that the environments in which learning agents operate may
be very complex and it is unrealistic to assume that the observations are
generated according to some distribution that is easy to describe.
5So far, we have only established sufficient conditions, i.e. upper bounds, on the sample

complexity required for learning. In later chapters we will establish necessary conditions, i.e.
lower bounds on the amount of data required for learning algorithms.

6We are using the word “required” a bit losely here. All we can say is our present analysis
of this particular algorithm suggests that the amount of data required scales linearly as 1

ε
.

We will see lower bounds of this nature that hold for any algorithm in later chapters.

1.2. KEY COMPONENTS OF THE PAC LEARNING FRAMEWORK 5

3. The output hypothesis is evaluated with respect to the same distribution D
that generated the training data.

4. We would like learning algorithms to be statistically efficient, i.e. they
should require a relatively small training sample to guarantee high accuracy
and confidence, as well as computationally efficient, i.e. they should run
in a reasonable amount of time. In general, we shall take the view that
learning algorithms for which the training sample size and running time
scales polynomially with the size parameters are efficient. However, in some
cases we will be more precise and specify the exact running time and sample
size.

Let us now formalise a few other concepts related to learning.

Instance Space
Let X denote the set of possible instances; an instance is the input part, x, of
a training example (x, y), and y is the target label. In the rectangle learning
game, the instances were points in R2; the instance space was R2. When
considering binary classification problems for images, the instances may be 3
dimensional arrays, containing the RGB values of each pixel. Mostly, we shall
be concerned with the case when X = {0, 1}n or X = Rn; other instance spaces
can be usually mapped to one of these, as is often done in machine learning.

Concept Class
A concept c over an instance space X is a boolean function c : X → {0, 1}. (We
will consider learning target functions that are not boolean later in the course.)
A concept class C over X is a collection of concepts c over X. In the rectangle
learning game, the concept class is the set of all axis-aligned rectangles in R2.
The learning algorithm has knowledge of C, but not of the specific concept
c ∈ C that is used to label the observations.

Data Generation
Let D be a probability distribution over X. The training data is obtained as
follows. An instance x ∈ X is drawn according to the distribution D. If c is
the target concept, the instance x is labelled accordingly as c(x). The learning
algorithm observes the example (x, c(x)). We will refer to this process as an
example oracle, denoted by EX(c,D). We assume that a learning algorithm can
query the oracle EX(c,D) at unit cost and each query yields an independent
training example.

1.2.1 PAC Learning: Take I
Let h : X → {0, 1} be some hypothesis; we typically refer to the boolean
function output by a learning algorithm as a hypothesis to distinguish it from
the target. For a distribution D over X and a fixed target c ∈ C, the error of
h with respect to c and D is defined as:

err(h; c,D) = Px∼D
[
h(x) 6= c(x)

]
. (1.2)

When c and D are clear from context, we will simply refer to this as err(h).

6 CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

(a) (b)

Figure 1.2: Different shape concepts in R2.

Definition 1.1 – PAC Learning: Take I. Let C be a concept class over X.
We say that C is PAC (take I) learnable if there exists a learning algorithm L
that satisfies the following: for every concept c ∈ C, for every distribution D
over X, for every 0 < ε < 1/2 and 0 < δ < 1/2, if L is given access to EX(c,D)
and inputs ε and δ, L outputs a hypothesis h ∈ C that with probability at least
1 − δ satisfies err(h) ≤ ε. The probability is over the random examples drawn
from EX(c,D) as well as any internal randomisation of L. The number of calls
made to EX(c,D) (sample complexity) must be bounded by a polynomial in 1

ε
and 1

δ .
We further say that C is efficiently PAC (take I) learnable if the running

time of L is polynomial in 1/ε and 1/δ.

The term PAC stands for probably approximately correct. The approxi-
mately correct part captures the notion that the most that can be guaranteed
is that the error of the output hypothesis can be bounded to be below a desired
level; demanding higher accuracy (lower ε) is possible, but comes at a cost of
increased running time and sample complexity. In most cases, achieving ex-
actly zero error is infeasible as it is possible that two target concepts may be
identical except on one instance which is very unlikely to be drawn according to
the distribution D.7 The probably part captures the notion that there is some
chance that the algorithm may fail completely. This may happen because the
observations are not representative of the underlying data distribution, a low
probability event, though very much a possible event. Our confidence (lower
δ) in the correctness of our algorithm is increased as we allow more sample
complexity and running time.

Based on our analysis of the rectangle learning game in Section 1.1, we have
essentially already proved the following theorem.

Theorem 1.2. The concept class of axis-aligned rectangles in R2 is efficiently
PAC (take I) learnable.

1.2.2 PAC Learning: Take II

Having proved our first result in PAC learning, let us discuss a couple of is-
sues that we have glossed over so far. The first question concerns that of the

7In later chapters, we will consider different learning frameworks under which exact
learning, i.e. achieving zero error, is possible.

1.2. KEY COMPONENTS OF THE PAC LEARNING FRAMEWORK 7

complexity of the concepts that we are trying to learn. For example, consider
the question of learning rectangles (Fig. 1.2(a)) versus more complex shapes
such as shown in Fig. 1.2(b). Intuitively, we believe that it should be harder
to learn concepts defined by shapes like in Fig. 1.2(b) than rectangles. Thus,
within our mathematical learning framework, an algorithm that learns a more
complex class should be allowed more resources (sample size, running time,
memory, etc.). In order to represent an axis-aligned rectangle, we only need to
store four real numbers, the lower and upper limits in both the x and y direc-
tions. The number of real numbers used to represent more complex shapes is
higher.8

The question of representation is better elucidated by taking the case of
boolean functions defined on the boolean hypercube X = {0, 1}n, the set of
length n bit vectors. Consider a boolean function f : X → {0, 1}; there are
several ways of representing boolean functions. One option is to keep the entire
truth table with 2n entries. Alternatively, we may represent f as a circuit
using ∧ (and), ∨ (or) and ¬ (not) gates. We may ask that f be represented in
disjunctive normal form (DNF), i.e. of the form shown below

(x1 ∧ x3 ∧ x7 ∧ · · ·) ∨ (x2 ∧ x4 ∧ x8 ∧ · · ·) ∨ · · · ∨ (x1 ∧ x3).

The choice of representation can make a huge difference in terms of the amount
of memory required to store a description of the boolean function. You are
asked to show this in the case of the parity function f = x1 ⊕ x2 ⊕ · · · ⊕ xn in
Exercise 1.2. There are other possible representations of boolean functions, such
as decision lists, decision trees, neural networks, etc., which we will encounter
later in the course.

Representation Scheme
Abstractly, a representation scheme for a concept class C is an onto function
R : Σ∗ → C, where Σ is a finite alphabet.9 Any σ ∈ Σ∗ satisfying R(σ) = c is
called a representation of c. We assume that there is a function, size : Σ∗ → N,
that measures the size of a representation. A concept c ∈ C may in general
have multiple representations under R. For example, there are several boolean
circuits that compute exactly the same boolean function. We can define the
function size on the set C by defining, size(c) = min

σ:R(σ)=c
{size(σ)}. When we

refer to a concept class, we will assume by default that it is associated with
a representation scheme and a size function, so that size(c) is well defined for
c ∈ C. In most cases of interest, there will be a natural notion of size that
makes sense for the learning problem at hand; however, some of the exercises
and coloured boxes encourage you to explore the subtleties involved with rep-
resentation size in greater detail.

Instance Size
Typically, instances in a learning problem also have a natural notion of size
associated with them; roughly we may think of the size of an instance as the

8We shall assume that our computers can store and perform elementary arithmetic op-
erations (addition, multiplication, division) on real numbers at unit cost.

9If representing the concept requires using real numbers, such as in the case of rectangles,
we may use R : (Σ ∪ R)∗ → C. Representing a real number will assumed to be unit cost.

8 CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

When learning a target concept c ∈ Cn, in general, allowing the learning
algorithm resources that increase with size(c) will be necessary. Mostly,
we will consider concept classes Cn over Xn for which every size(c) can
be bounded for every c ∈ Cn by some fixed polynomial function of n.
Thus, efficient PAC learning simply requires designing algorithms that
run in time polynomial in n, 1

ε and 1
δ .

Definition 1.3 is general enough to allow for the existence of “efficient”
PAC learning algorithms if an overly verbose representation scheme is
chosen. For example, the class of all boolean functions is efficiently
PAC-learnable when the representation scheme uses truth tables. On the
other hand, if we represent boolean functions as decision trees, or boolean
circuits, or even boolean formulae in disjunctive normal form (DNF), it
is widely believed that the class of boolean functions is not efficiently
PAC-learnable. We will provide some evidence for this assertion based on
cryptographic assumptions and on hardness of learning in the statistical
query (SQ) learning model in later chapters.

amount of memory required to store it. For example, 10× 10 black and white
images can be represented using 100 bits, whereas 1024 × 1024 colour images
will require over 3 million real numbers. When faced with larger instances,
we should expect that learning algorithms will require time; at the very least
they have to read the input data! In this course, we will only consider settings
where the instance space is either Xn = {0, 1}n or Xn = Rn. We denote by Cn
a concept class over Xn. We consider the instance space X =

⋃
n≥1 Xn and

the concept class C =
⋃
n≥1 Cn as representing increasingly larger instances

(and concepts on them).

Definition 1.3 – PAC Learning: Take II. For n ≥ 1, let Cn be a concept
class over instance space Xn and let C =

⋃
n≥1 Cn and X =

⋃
n≥1 Xn. We say

that C is PAC (take II) learnable if there exists a learning algorithm L that
satisfies the following: for every n ∈ N, for every concept c ∈ Cn, for every
distribution D over Xn, for every 0 < ε < 1/2 and 0 < δ < 1/2, if L is given
access to EX(c,D) and inputs n, size(c), ε and δ, L outputs h ∈ Cn that with
probability at least 1−δ satisfies err(h) ≤ ε. The probability is over the random
examples drawn from EX(c,D) as well as any internal randomization of L. The
number of calls made to EX(c,D) (sample complexity) must be bounded by a
polynomial in n, size(c), 1

ε and 1
δ .

We further say that C is efficiently PAC (take II) learnable if the running
time of L is polynomial in n, size(c), 1/ε and 1/δ.

1.3 Learning Conjunctions

Having formulated a notion of learning, let us consider a second learning prob-
lem. Let Xn = {0, 1}n represent the instance space of size n; note that each
element x ∈ Xn denotes a possible assignment to n boolean variables z1, . . . , zn;
let X =

⋃
n≥1 Xn. Let CONJUNCTIONSn denote the concept class of conjunc-

tions over the n boolean variables z1, . . . , zn. A literal is either a boolean
variable zi or its negation zi. A conjunction (sometimes also called a term) is

1.3. LEARNING CONJUNCTIONS 9

Algorithm 1.1: CONJUNCTIONS Learner
1 Input: n, m, access to EX(c,D)
2 // initialize hypothesis conjunction with all literals
3 Set h = z1 ∧ z1 ∧ z2 ∧ z2 ∧ · · · ∧ zn ∧ zn
4 for i = 1, . . . ,m do
5 draw (xi, yi) from EX(c,D)
6 if yi == 1 then // ignore negative examples
7 for j = 1, . . . n do
8 if xi,j = 0 then // jth bit of ith instance is 0
9 Drop zi from h

10 else // jth bit of ith instance is 1
11 Drop zi from h

12 Output: h

simply an and (∧) of literals. An example conjunction ϕ with n = 10 (say) is
show in (1.3).

ϕ = z1 ∧ z3 ∧ z8 ∧ z9. (1.3)

Formally, a conjunction over z1, . . . , zn can be represented by two subsets
P,N ⊂ [n]. Such a pair of sets P,N represents the conjunction ϕP,N defined
as

ϕP,N =
∧
i∈P

zi ∧
∧
i∈N

zi. (1.4)

In (1.4), the sets P and N represent the positive and negative literals that ap-
pear in the conjunction ϕP,N respectively. We have not required that P∩N = ∅;
this allows us to represent a boolean function that is 0 over the entire hyper-
cube (falsehood), e.g. as z1 ∧ z1. Both P and N could be empty, representing
an empty conjuntion that is 1 over the entire boolean hypercube (tautology).
Formally

CONJUNCTIONSn = {ϕP,N | P,N ⊂ [n]},

CONJUNCTIONS =
⋃
n≥1

CONJUNCTIONSn.

When representing a conjunction over n boolean variables, each of the sets P
and N can be represented by a bit-string of length n; as a result any conjunc-
tion can be represented using a bit-string of length 2n. As there are at least 2n
conjunctions (can you count the number of conjunctions exactly?) we should
expect to need at least n bits to represent a conjunction. Thus, this represen-
tation scheme is fairly succinct. Thus, our goal is to design an algorithm that
runs in time polynomial in n, 1/ε and 1/δ.

Let c denote the target conjunction. The example oracle EX(c,D) returns
examples of the form (x, y) where y ∈ {0, 1}. y = 1 if c evaluates to 1 (true)
after assigning zi = xi for i = 1, . . . , n. In other words, y = 1 if x is a satisfying
assignment of the conjunction c, and 0 otherwise.

Algorithm 1.1 is learns the concept class CONJUNCTIONS. We describe
the high-level idea before giving the complete proof.

10CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

i) The algorithm begins by conservatively constructing a hypothesis h that
is a conjunction of all the 2n possible literals. Clearly, this conjunction
will always output 0 on any given input. The algorithm then makes use
of data to remove harmful literals from h.

ii) The algorithm draws m independent examples (xi, yi) from the oracle
EX(c,D); all the negatively labelled examples (yi = 0) are ignored. For
positively labelled examples literals that would cause these to be labelled
as negative by h are dropped from h. The resulting hypothesis h is
returned. Thus, the algorithm outputs the “longest” conjunction (con-
taining the most number of literals) that is consistent with the observed
data. This is because only those literals that absolutely cannot be part
of the target conjunction (as dictated by the positively labelled data) are
dropped.

Theorem 1.4. Provided m ≥ 2n
ε log

(2n
δ

)
, Algorithm 1.1 efficiently PAC (take

II) learns the concept class CONJUNCTIONS.

Proof. Let c be the target conjunction and D the distribution over {0, 1}n.
For a literal ` (which may be zi or zi), let p(`) = Px∼D

[
c(x) = 1 ∧ `(x) = 0

]
;

here, we interpret ` itself as a conjunction with 1 literal. Thus, if ` = zi, then
`(x) = xi; if ` = zi, then `(x) = 1−xi. Notice that if p(`) > 0, then the literal
` cannot be present in c; if it were, then there can be no x such that c(x) = 1
and `(x) = 0.

We define a literal ` to be harmful if p(`) ≥ ε
2n . We will ensure that all

harmful literals are eliminated from the hypothesis h. For a harmful literal `,
let A` denote the event that after m independent draws from EX(c,D), ` is not
eliminiated from h. Note that this can only happen if no x such that c(x) = 1
but `(x) = 0 is drawn. This can happen with probability at most

(
1− ε

2n
)m.

Let B denote the set of harmful literals and let E =
⋃
`∈B A` be the event that

at least one bad literal survives in h. We shall choose m large enough so that
P [E] ≤ δ. Consider the following,

P [E] ≤
∑
`∈B

P [A`] By the Union Bound (A.1).

≤ 2n
(

1− ε

2n

)m
|B| ≤ 2n and for each ` ∈ B,P [A`] ≤

(
1− ε

2n

)m
.

≤ 2n exp
(
−mε2n

)
. As 1− x ≤ e−x (B.1).

Thus, whenever m ≥ 2n
ε log

(2n
δ

)
, we know that P [E] ≤ δ. Now, suppose that

E does not occur, i.e. all harmful literals are eliminated from h. Let Bc be the
set of literals that are not harmful.

err(h) = Px∼D
[
c(x) = 1 ∧ h(x) = 0

]
≤
∑
`∈Bc

Px∼D
[
c(x) = 1 ∧ `(x) = 0

]
≤ 2n · ε2n ≤ ε.

This completes the proof.

1.3. LEARNING CONJUNCTIONS 11

It is worth pointing out that Algorithm 1.1 only makes use of positively
labelled examples. The algorithm works correctly even if no positively labelled
examples are obtained from the oracle EX(c,D); this is because if no positive
examples are obtained after drawingm independent examples (for a sufficiently
large m), then returning a hypothesis h that always predicts 0 is sufficient to
achieve low error.

1.3.1 Learning k-CNF
We can generalize Algorithm 1.1 to learn richer classes of boolean functions.
A clause is a disjunction (∨) of boolean literals. The length of a clause is the
number of (not necessarily distinct) literals in it. For example, z1∨z7∨z15 is a
clause of length 3. Let clausesn,k denote the set of all clauses of length exactly k
on the n boolean variables z1, . . . , zn. We define the class of boolean functions
that can be written in conjunctive normal form using clauses of length exactly
k as:

k-CNFn = {
∧
i

ci | ci ∈ clausesn,k},

k-CNF =
⋃
n≥1

k-CNFn.

A representation of boolean function as in the class k-CNF is called a k-CNF
formula. There are at most (2n)k possible clauses of length k on n boolean
variables and so each k-CNF formula over n variables can have at most (2n)k
clauses. (Allowing clauses to have the same literal multiple times and letting
the order of literals matter, we shall assume in the rest of this section that
there are exactly (2n)k clauses of length k.)

It is completely straightforward to modify Algorithm 1.1 to start with a
hypothesis h that is a k-CNF formula with all (2n)k clauses and eliminate the
clauses that cause positive examples to be labelled negative. This algorithm is
efficient if we assume the representation scheme to have length (2n)k, and in
any case the running time and sample complexity is polynomial in n for any
fixed constant k.

Rather than redo the proof of Theorem 1.4, we shall sketch a different
approach that also introduces the notion of a reduction between learning prob-
lems. Suppose the target function is a k-CNF formula over the boolean variables
z1, . . . , zn; we create new boolean variables (z′`1,...,`k

) where each `i is either
some zj or zj . When placed in parentheses, (z′`1,...,`k

) denotes the set of all
possible (2n)k boolean variables; whereas by itself z′`1,...,`k

denotes the specific
variable corresponding to the tuple of literals (`1, . . . , `k). The boolean variable
z′`1,...,`k

is meant to respresent the clause `1 ∨ · · · ∨ `k. Given an assignment
to the boolean variables z1, . . . , zn denoted by some bit-vector x ∈ {0, 1}n, an
assignment to (z′`1,...,`k

) can be uniquely determined, by assigning the variable
z′`1,...,`k

the value 1 if and only if x is a satisfying assignment of the clause
`1 ∨ · · · ∨ `k. This yields a bit vector in {0, 1}(2n)k that represents the assign-
ment to all (z′`1,...,`k

). Let us denote this map from {0, 1}n to {0, 1}(2n)k by f
and observe that it is injective.

Now consider the following “natural” bijective map, denoted by g, between
k-CNF formulae over z1, . . . , zn and monotone conjunctions over (z′`1,...,`k

):

12CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

given a k-CNF formula ϕ, the literal z′`1,...,`k
appears in the monotone con-

junction f(ϕ) if and only if ϕ contains the clause `1 ∨ · · · `k.10 (A conjunction
is monotone if it does not contain any negated literals; Algorithm 1.1 modified
to start with h = z1∧· · ·∧zn clearly learns the class of monotone conjunctions.)

Let D be a distribution over {0, 1}n and let f(D) denote the distribution
over {0, 1}(2n)k obtained by first drawing x according to D and then applying
f to x. Let c, h ∈ k-CNFn, then it can be easily verified that

err(h; c,D) = err(g(h); g(c), f(D)).

The only thing that remains is to observe that the maps f , g and g−1 are (triv-
ially) polynomial time computable and that the example oracle EX(g(c), f(D))
can be simulated given access to EX(c,D). Thus, we have proved the following
result.

Theorem 1.5. The concept class k-CNF is efficiently PAC (take II) learnable.

1.4 Hardness of Learning 3-term DNF

Having seen a few examples of concept classes that are PAC (take II) learn-
able, we shall temper our optimism by proving that a class of boolean functions
(not significanly more complex than CONJUNCTIONS) is not PAC (take II)
learnable, assuming an unproven, but widely believed, conjecture from com-
putational complexity theory. The class is that of boolean functions that can
expressed as DNF formulae with exactly 3 terms. A term is simply a conjunc-
tion over n boolean variables z1, . . . , zn. Formally, the class is defined as

3-TERM-DNFn = {T1 ∨ T2 ∨ T3 | Ti ∈ CONJUNCTIONSn},

3-TERM-DNF =
⋃
n≥1

3-TERM-DNFn.

Note that any DNF formula with 3 terms can be expressed as a bit-string of
length at most 6n—there are three terms, each of which is a boolean conjunc-
tion expressible by a boolean string of length 2n; as a result, the representation
size for each c ∈ 3-TERM-DNFn can be bounded by 6n. Thus, an efficient al-
gorithm for learning 3-TERM-DNF needs to run in time polynomial in n, 1/ε
and 1/δ. The next result shows that such an algorithm in fact is unlikely to
exist. Formally, we’ll prove the following theorem.

Theorem 1.6. 3-TERM-DNF is not efficiently PAC (take II) learnable unless
RP = NP.

Let us first discuss the condition “unless RP = NP”. We will briefly define
the class RP here, but those unfamiliar with (randomized) complexity classes
may wish to refer to standard texts on complexity theory (cf. Chapter Notes
in Section 1.8). The class RP consists of languages for which membership can
be determined by a randomised polynomial time algorithm that errs on only

10We treat this map as purely syntactic. In particular, for truth assignments the order of
the variables does not matter; however, for the purpose of the map g, the 2-CNF formulae
(x1∨x2)∧(x3∨x4) and (x2∨x1)∧(x4∨x3) would be mapped to the (distinct) conjunctions,
z′z1,z2 ∧ z′z3,z4 and z′z2,z1 ∧ z′z4,z3 respectively.

1.4. HARDNESS OF LEARNING 3-TERM DNF 13

one side. More formally, a language L ∈ RP, if there exists a randomised
polynomial time algorithm A that satisfies the following

– For string σ 6∈ L, A(σ) = 0

– For string σ ∈ L, A(σ) = 1 with probability at least 1/2.

The rest of this section is devoted to prove Theorem 1.6. We shall reduce an
NP-complete language to the problem of PAC (take II) learning 3-TERM-DNF.
Suppose L is a language that is NP-complete. Given an instance (string) σ we
wish to decide whether σ ∈ L. We will construct a training sample, a set of
positive instances S+ and negative instances S−, where S+ and S− are disjoint.
We will show that there exists a 3-term DNF formula ϕ such that all instances
in S+ are satisfying assignments of ϕ and that none of the instances in S−
satisfy ϕ, if and only if σ ∈ L.

Let us see how an algorithm that PAC (take II) learns 3-TERM-DNF can
be used to test whether or not σ ∈ L. Let S = S+ ∪ S−, where S+ and S− are
the sets as constructed above, and let D be a distribution that is uniform over
S, i.e. a distribution that assigns probability mass 1

|S| to every instance that
appears in S, and 0 mass to all other instances. Let ε = 1

2|S| and δ = 1/2. Now,
let us suppose that σ ∈ L, then indeed there does exist 3-term DNF formula,
ϕ, that is consistent with the sample S. So we can simulate a valid example
oracle EX(ϕ,D), by simply returning a random example (x, y) where x is chosen
uniformly at random from S, and y = 1 if x ∈ S+, and y = 0 otherwise. By the
PAC (take II) learning guarantee, with probability at least 1/2, the algorithm
returns h ∈ 3-TERM-DNF, such that err(h) ≤ 1

2|S| . However, as there are only
|S| instances in S and the distribution is uniform, it must be that h correctly
predicts the labels of all instances in S, which implies σ ∈ L. Notice that given
h, it can easily be checked in polynomial time that h indeed correctly predicts
the labels for all instances in S.

On the other hand, if σ 6∈ L, there is no 3-term DNF formula that correctly
assigns labels to the instances in S. Hence, the learning algorithm cannot
output such an h ∈ 3-TERM-DNF. Again, given the output hypothesis h,
checking whether h correctly labels all the instances in S or not, can be easily
done in polynomial time. Thus, assuming a PAC (take II) learning algorithm
for 3-TERM-DNF exists, we also have a randomised algorithm to solve the
decision problem for the NP-complete language L. This in turn implies that
RP = NP, something that is widely believed to be untrue.

All that is left to do is to identify a suitable NP-complete language and
show how to construct a sample S with the desired property. In this case, we
will use the fact that graph 3-colouring is NP-complete.

Graph 3-Colouring reduces to PAC (Take II) Learning 3-TERM-DNF

The language 3-COLOURABLE consists of representations of graphs that can
be 3-coloured. We say a graph is 3-colourable if there is an assignment from the
vertices to the set of three colours, {r, g, b}, such that no two adjacent vertices
are assigned the same colour. As already discussed, given a graph G, we only
need to produce disjoint sets S+ and S− of instances that are positively and
negatively labelled respectively, such that the graph G is 3-colourable if and

14CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

1

2 3
4

5
6

(a) Graph

v(1) (0, 1, 1, 1, 1, 1)
v(2) (1, 0, 1, 1, 1, 1)
v(3) (1, 1, 0, 1, 1, 1)
v(4) (1, 1, 1, 0, 1, 1)
v(5) (1, 1, 1, 1, 0, 1)
v(6) (1, 1, 1, 1, 1, 0)

(b) Positive Examples

e({1, 2}) (0, 0, 1, 1, 1, 1)
e({1, 6}) (0, 1, 1, 1, 1, 0)
e({2, 3}) (1, 0, 0, 1, 1, 1)
e({2, 4}) (1, 0, 1, 0, 1, 1)
e({3, 6}) (1, 1, 0, 1, 1, 0)
e({4, 5}) (1, 1, 1, 0, 0, 1)
e({4, 6}) (1, 1, 1, 0, 1, 0)
e({5, 6}) (1, 1, 1, 1, 0, 0)

(c) Negative Examples

Figure 1.3: (a) A graph G along with a valid three colouring. (b) Positive
examples of the sample generated using G. (c) Negative examples of the sample
generated using G.

only if there exists a 3-term DNF formula that correctly predicts the labels of
all instances in S+ ∪ S−.

For notational convenience, in this section, we will denote the instances
as v(i) and e(i, j) rather than the more usual x. Suppose G has n ver-
tices. For vertex i ∈ G, we let v(i) ∈ {0, 1}n that has a 1 in every posi-
tion except i. For an edge (i, j) in G, we let e({i, j}) ∈ {0, 1}n that has
a 1 in all positions except i and j. Let S+ = {v(i) | i a vertex of G} and
S− = {e({i, j}) | {i, j} an edge of G}; clearly S+ and S− are disjoint. Fig-
ure 1.3 shows an example of a graph that is 3-colourable along with the sets
S+ and S−.

First, suppose that G is 3-colourable. Let Vr, Vg, Vb be the set of vertices of
G that are labelled red (r), blue (b) and green (g) respectively. Let z1, . . . , zn
denote the n boolean variables (one corresponding to each vertex of G). Let
Tr =

∧
i6∈Vr

zi. Tg and Tb are defined similarly. Consider the 3-term DNF
formula ϕ = Tr ∨ Tg ∨ Tb; we will show that all instances in S+ satisfy ϕ and
that none of the instances in S− do. First consider v(i) ∈ S+. Without loss of
generality, suppose i is coloured red, i.e. i ∈ Vr. Then, we claim that v(i) is
a satisfying assignment of Tr and hence also of ϕ. Clearly, the literal zi is not
contained in Tr and there are no negative literals in Tr. Since all the bits of v(i)
other than the ith position are 1, v(i) is a satisfying assignment of Tr. Now,
consider e({i, j}). We claim that e({i, j}) is not a satisfying assignment of any
of Tr, Tg or Tb and hence it also does not satisfy ϕ. For a colour c ∈ {r, g, b},
either i is not coloured c or j isn’t. Suppose i is the one that is not coloured c,
then Tc contains the literal zi, but the ith bit of e({i, j}) is 0 and so e({i, j})
is not a satisfying assignment of Tc. This argument applies to all colours and
hence e({i, j}) is not a satisfying assignment of ϕ. This completes the “if” part
of the proof.

Next, suppose that ϕ = Tr ∨Tg ∨Tb is a 3-term DNF such that all instances
in S+ are satisfying assignments of ϕ and none in S− are. We use ϕ to assign
colours to the vertices of G that represent a valid 3-colouring. For a vertex i,
since v(i) is a satisfying assignment of ϕ, it is also a satisfying assignment of at
least one of Tr, Tg or Tb. We assign it a colour based on the term for which it is
a satisfying assignment (ties may be broken arbitrarily). Since for every vertex
i, there exists v(i) ∈ S+, this ensures that every vertex is assigned a colour.

1.5. LEARNING 3-CNF VS 3-TERM-DNF 15

Next, we need to ensure that no two adjacent vertices are assigned the same
colour. Suppose there is an edge {i, j} such that i and j are assigned the same
colour. Without loss of generality, suppose that this colour is red (r). Since
we know that e({i, j}) is not a satisfying assignment of ϕ, e({i, j}) also does
not satisfy Tr. Also, as i and j were both coloured red, v(i) and v(j) do satisfy
Tr. This implies that the literals zi and zj are not present in Tr. The fact that
v(i) satisfies Tr ensures that the literal zk for any k 6= i cannot appear in Tr.
However, if Tr does not contain any negated literal, other than possibly zi, and
if it does not contain the literals zi and zj , then e({i, j}) satisfies Tr and hence
ϕ, a contradiction. Hence, there cannot be any two adjacent vertices that have
been assigned the same colour. This completes the proof of the “only if” part
and with it also the proof of Theorem 1.6.

1.5 Learning 3-CNF vs 3-TERM-DNF

In Section 1.3.1, we proved that the concept class k-CNF, and hence 3-CNF, is
efficiently PAC (take II) learnable. On the other hand, Theorem 1.6 shows that
under the widely believed assumption that RP 6= NP, the class 3-TERM-DNF
is not efficiently PAC (take II) learnable. Let us recall the distributive law of
boolean operations

(a ∧ b) ∨ (c ∧ d) ≡ (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d). (1.5)

By applying the rule (1.5), we can express any ϕ ∈ 3-TERM-DNF as some
ψ ∈ 3-CNF.

ϕ = T1 ∨ T2 ∨ T3 ≡
∧
`1∈T1
`2∈T2
`3∈T3

(`1 ∨ `2 ∨ `3) = ψ

For any distribution D over Xn = {0, 1}n, the example oracles EX(ϕ,D) and
EX(ψ,D) are indistinguishable. Thus, if we use a PAC (take II) learning algo-
rithm for 3-CNF that outputs some h ∈ 3-CNF, with probability at least 1− δ,
we will have

err(h;ϕ,D) = err(h;ψ,D) ≤ ε.

What this suggests is that if our goal is simply to predict as well as the
target concept ϕ ∈ 3-TERM-DNF, then there is no impediment (in terms of
statistical or computational resources) to doing so. The difficulty arises be-
cause our definition of PAC (take II) learning requires us to express the output
hypothesis as a 3-term DNF formula. Arguably from the point of view of learn-
ing, being able to predict labels correctly is more important than the exact
hypothesis we use to do so. Our final definition of PAC learning in Section 1.6
will allow learning algorithms to output hypothesis that do not belong to the
concept class being learnt. We will still need to put some restrictions on what
is allowable as an output hypothesis; you are asked to explore the implications
of loosening these requirements further in Exercise 2.3. It may also be the case
that the computational savings (being able to run in polynomial time) come at

16CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

a statistical cost, something we will explore in greater detail after having seen
some general methods of designing learning algorithms.11

1.6 PAC Learning

In our final definition of PAC learning, we shall remove the requirement that
the output hypothesis actually belongs to the concept class being learnt. We
then have to specify in what form an algorithm may output a hypothesis. As
was the case with concept classes, we can define a hypothesis class Hn over the
instances Xn (implicitly we assume that there is also a representation scheme
for Hn and an associated size function), and consider the hypothesis class
H =

⋃
n≥1 Hn. We will wish to place some restrictions on the hypothesis class.

(To explore why consider Exercise 2.3.) The requirement we add is that the
hypothesis class H be polynomially evaluatable.

Definition 1.7 – Polynomially Evaluatable Hypothesis Class. A hy-
pothesis class H is polynomially evaluatable if there exists an algorithm that
on input any instance x ∈ Xn and any representation h ∈ Hn, outputs the
value h(x) in time polynomial in n and size(h).

In words, the requirement that H be polynomially evaluatable demands
that given the description of the “program” encoding the prediction rule, h,
and an instance, x, we should be evaluate h(x) in a reasonable amount of time.
Here reasonable means polynomial in the input, i.e. size(h) and x. We now give
the final defintion of PAC learning and then end by making a few observations.

Definition 1.8 – PAC Learning. For n ≥ 1, let Cn be a concept class over
instance space Xn and let C =

⋃
n≥1 Cn and X =

⋃
n≥1 Xn. We say that C

is PAC learnable using hypothesis class H if there exists an algorithm L that
satisfies the following: for every n ∈ N, for every concept c ∈ Cn, for every
distribution D over Xn, for every 0 < ε < 1/2 and 0 < δ < 1/2, if L is given
access to EX(c,D) and inputs n, size(c), ε and δ, L outputs h ∈ Hn that with
probability at least 1−δ satisfies err(h) ≤ ε. The probability is over the random
examples drawn from EX(c,D) as well as any internal randomization of L. The
number of calls made to EX(c,D) (sample complexity) must be bounded by a
polynomial in n, size(c), 1

ε and 1
δ .

We further say that C is efficiently PAC learnable using H, if the running
time of L is polynomial in n, size(c), 1/ε and 1/δ, and if H is polynomially
evaluatable.

Some comments regarding the definition of PAC Learning
i) For efficient PAC learning, although no explicit restriction is put on what

size(h) can be, the requirement on the running time of the algorithm
ensures that size(h) itself must be bounded by a polynomial in n, size(c),
1
δ and 1

ε .

11The word “may” has been used in the above sentence because the claim is based only on
different upper bounds on the sample complexity of efficient learning algorithms. No “non-
trivial” lower bound on the sample complexity for a polynomial time algorithm for learning
3-TERM-DNF. This will be discussed in greater detail in Chapter 2.

1.7. EXERCISES 17

ii) When H is not explicitly specified, by efficient PAC learning C, we mean
that there exists some polynomially evaluatable hypothesis class H, such
that C is efficiently PAC learnable using H.

iii) In terms for our final definition of PAC learning, PAC (take II) learning C
refers to PAC learning C using C. When efficiency is a consideration, the
learning algorithm has to be efficient and C itself needs to be polynomially
evaluatable. In the literature (and in the rest of this course), (efficient)
PAC (take II) learning is referred to as (efficient) proper PAC learning.
Sometimes to distinguish PAC learning from proper PAC learning, the
word improper is added in front of PAC learning.

iv) In the definition of PAC learning (all of them), we do require that the
number of calls to EX(c,D) is bounded by a polynomial in n, size(c),
1
ε and 1

δ . This corresponds to the sample complexity or the amount of
data used by the learning algorithm. Even when we allow inefficient
algorithms, we do require the amount of data used to be modest; this
is mainly to capture the idea that automated learning is about learning
the target function using a modest amount of data. When arbitrary
computational power is permitted, there is not much to be gained from
using more data; this follows from Exercise 2.3.

1.7 Exercises

1.1. This question is about the rectangle learning problem.

a) Modify the analysis of the rectangle learning algorithm to work in
the case that D is an arbitrary probability distribution over R2.

b) The concept class of hyper-rectangles over Rn is defined as follows

RECTANGLESn = {1[a1,b1]×···×[an,bn] | ai, bi ∈ R, ai < bi}.

For a set S ⊂ Rn, the notation 1S represents its indicator, i.e. the
boolean function that is 1 if x ∈ S and 0 otherwise. Generalise the
algorithm for learning rectangles in R2 and show that it efficiently
PAC learns the class of hyper-rectangles. Give bounds on the num-
ber of examples required to guarantee that with probability at least
1−δ, the error of the output hypothesis at most ε. The sample com-
plexity and running time of your algorithm should be polynomial in
n, 1

ε and 1
δ .

1.2. Let f : {0, 1}n → {0, 1} be the parity function on the n bits, i.e. f =
z1 ⊕ z2 ⊕ · · · ⊕ zn. In words, when given n bits as input f evaluates to 1
if and only if an odd number of the input bits are 1.

a) A boolean circuit with n inputs is a directed acyclic graph with
exactly n source nodes and 1 sink node. The source nodes contain
the inputs z1, . . . , zn (at the time of evaluation each zi is assigned
a value in {0, 1}). Each internal node is labelled with either ∧,
∨, or ¬; internal nodes labelled by ∧ or ∨ have in-degree exactly
2 and internal nodes labelled by ¬ have in-degree exactly 1. The
nodes labelled by ∧, ∨ and ¬, compute the logical and, or, and

18CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

not, of their inputs (the values at the one or two nodes that feed
into them) respectively. The sink node represents the output of the
circuit which will be either 0 or 1. The size of a boolean circuit
is defined to be the number of edges in the directed acyclic graph
that represents the circuit; the depth of a circuit is the length of the
longest path from a source node to the sink node. Show that f can
be represented as a boolean circuit of size O(n) and depth O(logn).

b) Show that representing f in disjunctive normal form (DNF) requires
at least 2n−1 terms.

1.3. Say that an algorithm L perhaps learns a concept class C using hypothesis
class H, if for every n, for every concept c ∈ Cn, for every distribution D
over Xn and for every 0 < ε < 1/2, L given access to EX(c,D) and inputs
ε and size(c), runs in time polynomial in n, size(c) and 1/ε, and outputs
a polynomially evaluatable hypothesis h ∈ Hn, that with probability at
least 3/4 satisfies err(h) ≤ ε. In other words, we’ve set δ = 1/4 in the
definition of efficient PAC learning. Show that if C is “perhaps learnable”
using H, then C is also efficiently PAC learnable using H.

1.4. Consider the question of learning boolean threshold functions. Let Xn =
{0, 1}n and for w ∈ {0, 1}n and k ∈ N, fw,k : Xn → {0, 1} is a boolean
threshold function defined as follows:

fw,k(x) =

1 if

n∑
i=1

wi · xi ≥ k

0 otherwise

Define the concept class of threshold functions as

THRESHOLDSn = {fw,k | w ∈ {0, 1}n, 0 ≤ k ≤ n},

THRESHOLDS =
⋃
n≥1

THRESHOLDSn.

Prove that unless RP = NP, there is no efficient proper PAC learning
algorithm for THRESHOLDS.

1.5. Let Xn = {0, 1}n be the instance space. A parity function, χS , over Xn

is defined by some subset S ⊆ {1, . . . , n}, and takes the value 1 if and odd
number of the input literals in the set {xi | i ∈ S} are 1 and 0 otherwise.
For example, if S = {1, 3, 4}, then the function χS = x1⊕x3⊕x4 computes
the parity on the subset {x1, x3, x4}. Note that any such parity function
can be represented by a bit string of length n, by indicating which indices
are part of S. Let PARITIESn denote the concept class consisting of all
2n parity functions; observe that the the concept class PARITIESn has
representation size at most n. Show that the class PARITIES, defined as
PARITIES =

⋃
n≥1 PARITIESn, is efficiently proper PAC learnable. You

should clearly describe a learning algorithm, analyse its running time and
prove its correctness.

1.8. CHAPTER NOTES 19

1.8 Chapter Notes

Material in this lecture is almost entirely adopted from Kearns and Vazirani [6,
Chap. 1]. The original PAC learning framework was introduced in a seminal
paper by Valiant [8].

While we will not make heavy use of deep results from Computational Com-
plexity theory, acquaintance with basic concepts such as NP-completeness, will
be necessary. Better understanding of computational complexity will also be
beneficial to understand hardness of learning based on the RP 6= NP conjecture
and other conjectures from cryptography. The classic text by Papadimitriou
[7], and the more recent book by Arora and Barak [1], are excellent resources
for students wishing to read up further on computational complexity theory.

Chapter 2

Consistent Learning and
Occam’s Razor

In the previous chapter, we studied a few different learning algorithms. Both
the design and the analysis of those algorithms was somewhat ad hoc, based on
first principles. In this chapter, we’ll begin to develop tools that will serve as
general methods to design learning algorithms and analyse their performance.

2.1 Occam’s Razor

In the first part of this chapter, we’ll study an explanatory framework for
learning. In the PAC learning framework, what is important is a guarantee
that, with high probability, the output hypothesis performs well on unseen
data, i.e. data drawn from the target distribution D. Here we consider the
following question: Given (x1, y1), (x2, y2), . . . , (xm, ym), where xi ∈ Xn and
yi ∈ {0, 1}, can we find some hypothesis, h : Xn → {0, 1} that is consistent
with the observed data, i.e. for all i, h(xi) = yi.1

If there is no restriction on the output hypothesis, then this can be simply
achieved by memorizing the data. In particular, one could output a program
of the form, “if x = x1, output y1, else if x = x2, output y2, . . . , else if
x = xm, output ym, else output 0”. This output hypothesis is correct on all
of the observed data and predicts 0 on all other instances. Clearly, we would
not consider this as a form of learning. The basic problem here is that the
“explanation” of the data is as long as the data itself. Even if one tries to rule
out programmes of this kind, it is easy to see that simple concept classes are
rich enough to essentially memorise the data (cf. Exercise 2.1).

The condition that we want to impose is that the explanation of the data
be succinct, at the very least, shorter than the length of the data itself. In
computational learning theory, this is referred to as the Occam Principle or
Occam’s Razor, named after the medieval philosopher and theologian, William
of Ockham, who expounded the principle that “explanations should be not
made unnecessarily complex”.2

1In order to avoid absurdities, we will assume that for all 1 ≤ i, j ≤ m, it is not the case
that xi = xj , but yi 6= yj .

2This is by no means a wholly accurate depiction of the writings of William of Ockham.
Those interested in the history are encouraged to look up the original work.

21

22 CHAPTER 2. CONSISTENT LEARNING AND OCCAM’S RAZOR

Philosophical Implications*
The notion of succinct explanations can be formalised in several ways and has
deep connections to various areas of mathematics and philosophy. There are
connections to Kolmogorov complexity which leads to theminimum description
length (MDL) principle. The MDL principle itself can be given a Bayesian
interpretation of assigning a larger prior probability to shorter hypotheses. The
existence of a short description also implies existence of compression schemes.
We will not discuss these issues in detail in this course; the interested student
is referred to the following sources as a starting point [2, 5, 3].

Typically, finding the shortest hypothesis consistent with the data may be
intractable or even uncomputable. In order to get useful results out of this
principle, we do not need to find the shortest description or achieve optimal
compression. It turns out that it is enough for the description of the output
hypothesis to be slightly shorter than the amount of data observed. We’ll
formalise this notion to derive PAC-learning algorithms from explanatory hy-
potheses.

2.2 Consistent Learning

We’ll first define the notion of a consistent learning algorithm, or consistent
learner, for a concept class C.3

Definition 2.1 – Consistent Learner. We say that a learning algorithm
L is a consistent learner for a concept class C using hypothesis class H, if
for all n ≥ 1, for all c ∈ Cn and for all m ≥ 1, given as input the sequence
of examples, (x1, c(x1)), (x2, c(x2)), . . . , (xm, c(xm)), where each xi ∈ Xn, L
outputs h ∈ Hn such that for i = 1, . . . ,m, h(xi) = c(xi). We say that L
is an efficient consistent learner if the running time of L is polynomial in n,
size(c) and m. Furthermore, we shall say that a concept class C is (efficiently)
consistently learnable, if there exists a learning algorithm L and a polynomially-
evaluatable hypothesis class H, such that L is an (efficient) consistent learner
for C using H.

A consistent learning algorithm is simply required to output a (polynomially
evaluatable) hypothesis that is consistent with all the training data provided
to it. So far, we have not imposed any requirement on the hypothesis class H.
This notion of consistency is closely related to the empirical risk minimisation
(ERM) principle in the statistical machine learning literature, where the risk
is defined using the zero-one loss.

The main result we will prove is that if H is “small enough”, something that
is made precise in the theorem below, then a consistent learner can be used to
derive a PAC-learning algorithm. This theorem shows that short explanatory
hypotheses do in fact also possess predictive power.

Theorem 2.2 – Occam’s Razor, Cardinality Version. Let C be a concept
class and H a hypothesis class. Let L be a consistent learner for C using H.

3Starting from this chapter, we will avoid the cumbersome notation of treating a concept
class C as C = ∪n≥1Cn (likewise X = ∪n≥1Xn and H = ∪n≥1Hn) and shall assume that
this is implicitly the case. Where confusion may arise we shall continue to be fully explicit
about concept classes that contain concepts defined over instance spaces of increasing sizes.

2.3. IMPROVED SAMPLE COMPLEXITY 23

Then for all n ≥ 1, for all c ∈ Cn, for all D over Xn, for all 0 < ε < 1/2 and
all 0 < δ < 1/2, if L is given a sample of size m drawn from EX(c,D), such
that,

m ≥ 1
ε

(
log |Hn|+ log 1

δ

)
, (2.1)

then L is guaranteed to output a hypothesis h ∈ Hn that with probability at
least 1− δ, satisfies err(h) ≤ ε.

If furthermore, L is an efficient consistent learner, log |Hn| is polynomial
in n and size(c), and H is polynomially evaluatable, then C is efficiently PAC-
learnable using H.

Proof. Fix a target concept c ∈ Cn and the target distribution D over Xn.
Call a hypothesis, h ∈ Hn “bad” if err(h) ≥ ε. Let Ah be the event that
m independent examples drawn from EX(c,D) are all consistent with h, i.e.
h(xi) = c(xi), for i = 1, . . . ,m. Then, if h is bad, P [Ah] ≤ (1− ε)m ≤ e−εm.

Consider the event,
E =

⋃
h∈Hn:h bad

Ah

Then, by a simple application of the union bound (A.1), we have,

P [E] ≤
∑

h∈Hn:h bad
P(Ah) ≤ |Hn| · e−εm

Thus, whenever m is larger than the bound given in the statement of the
theorem, except with probability δ, no “bad” hypothesis is consistent with m
random examples drawn from EX(c,D). However, any hypothesis that is not
“bad”, satisfies err(h) ≤ ε as required.

Remark 2.3. The version of the theorem described above only allows Hn

to depend on Cn and n. It is possible to have a much more general version,
where instead we consider the hypothesis class Hn,m where a consistent learner
when given m examples outputs some h ∈ Hn,m. As long as log |Hn,m| can be
bounded by polynomial in n, size(c) and mβ for some β < 1, a PAC-learning
algorithm can still be derived from a consistent learner. Exercise 2.2 asks to
you prove this more general result. The proofs for this version appears in the
book by Kearns and Vazirani [6, Chap. 2].

2.3 Improved Sample Complexity

Learning CONJUNCTIONS
Let us revisit some of the learning algorithms we’ve seen so far. We derived
an algorithm for learning conjunctions. At the heart of the algorithm was,
in fact, a consistent learner, obtained only using positive examples. Thus,
for the conjunction learning algorithm Cn = Hn. Note that the number of
conjunctions on n literals is 3n (each variable may appear as a positive literal,
negative literal, or not at all).

Our analysis of the conjunction learning algorithm showed that if the num-
ber of examples drawn from EX(c,D) was at least 2n

ε

(
log(2n) + log 1

δ

)
, the

output hypothesis with high probability has error at most ε. Theorem 2.2
shows that in fact even a sample of size 1

ε

(
n log 3 + log 1

δ

)
would suffice.

24 CHAPTER 2. CONSISTENT LEARNING AND OCCAM’S RAZOR

Learning 3-TERM-DNF

Let us now consider the question of learning 3-TERM-DNF. We have shown
that finding a 3-term DNF formula ϕ that is consistent with a given sample
is NP-complete. On the other hand, we saw that it is indeed possible to find
a 3-CNF formula that is consistent with a given sample. Let us compare the
sample complexity bounds given by Theorem 2.2 in both of these cases. In
order to do that we need good bounds on |3-TERM-DNF| and |3-CNF|. Any
3-TERM-DNF formula can be encoded using at most 6n bits, each term (or
a conjunction) can be represented by a a bit string of length 2n to indicate
whether a variable appears as a positive literal, negative literal, or not at all.
Thus, |3-TERM-DNF| ≤ 26n.

Similarly, there are (2n)3 possible clauses with three literals. Thus, each
3-CNF formula can be represented by a bit string of length (2n)3, indicating
for each of the possible clauses whether they are present in the formula or not.
Thus, |3-CNF| ≤ 28n3 . It is also not hard to show that |3-CNF| ≥ 2κn3 for
some universal constant κ > 0. Thus, it is the case that log |3-CNF| = Ω(n3).
Thus, in order to use a consistent learner that outputs a 3-CNF formula, we
need a sample that has size Ω

(
n3

ε

)
;4 on the other hand if we had unbounded

computational resources and could solve the NP-complete problem of finding a
3-term DNF consistent with a sample, then a sample of size O

(
n
ε

)
is sufficient

to guarantee a hypothesis with error at most ε (assuming δ is constant). This
suggests that there may be tradeoff between running time and sample complex-
ity. However, it does not rule out that there may be another computationally
efficient algorithm for learning 3-TERM-DNF that has a better bound in terms
of sample complexity. This question is currently open.

2.4 Exercises

2.1 Given (x1, y1), (x2, y2), . . . , (xm, ym), such that xi ∈ Xn and yi ∈ {0, 1},
and for all 1 ≤ i, j ≤ m, it is not the case that xi = xj , but yi 6= yj , show
that there is a DNF formula of length O(m) that is consistent with the
observed data.

2.2 Formulate Remark 2.3 as a precise mathematical statement and prove
it. Observe that when Hn,m instead of Hn is used in Equation (2.1),
m appears on both sides of the equation. You should justify that there
exists m that is still polynomial in n, size(c), 1

δ and 1
ε that satisfies the

modified form of Equation (2.1).

2.3 Recall that in the definition of PAC-learning, we require that the hypoth-
esis output by the learning algorithm be evaluatable in polynomial time.
Suppose we relax this restriction, and let H be the class of all Turing
machines (not necessarily polynomial time)—so the output of the learn-
ing algorithm can be any program. Let Cn be the class of all boolean
circuits of size at most p(n) for some fixed polynomial p and having n

4At the very least, this is the lower bound we get if we apply Theorem 2.2. We will
see shortly that in fact this is a lower bound on sample complexity for learning 3-CNF, no
matter what algorithm is used.

2.4. EXERCISES 25

boolean inputs. Show that C =
⋃
n≥1 Cn is PAC-learnable using H (un-

der this modified definition). Argue that this solution shows that the
relaxed definition trivialises the model of learning.

2.4 A k-decision list over n boolean variables x1, . . . , xn, is defined by an
ordered list

L = (c1, b1), (c2, b2), . . . , (cl, bl),

and a bit b, where each ci is a clause (disjunction) of at most k literals
(positive or negative) and each bi ∈ {0, 1}. For a ∈ {0, 1}n the value
L(a) is defined to be bj , where j is the smallest index satisfying cj(a) = 1
and L(a) = b if no such index exists. Pictorially, a decision list can be
depicted as shown below. As we move from left to right, the first time a
clause is satisfied, the corresponding bj is output, if none of the clauses
is satisfied the default bit b is output.

x1 ∨ x3

b1

x4

b2

x2 ∨ x3

b3

x1 ∨ x5

b4

x4 ∨ x6

b5

x1 ∨ x6

b6

b

Give a consistent learner for the class of decision lists. As a first step,
argue that it is enough to just consider the case where all the clauses
have length 1, i.e. in fact they are just literals.

Appendix A

Useful Inequalities from
Probability Theory

It is assumed that the reader has sufficient familiarity with the basics of the
theory of probability.

A.1 The Union Bound

This is an elementary inequality, though surprisingly powerful in several appli-
cations in learning theory and the analysis of algorithms. If A1, A2, . . . is a (at
most countable) collection of events, then

P

⋃
i

Ai

 ≤∑
i

P(Ai). (A.1)

This inequality is known as the union bound (or Boole’s inequality) as it shows
that the probability of the union of a collection of events can be upper-bounded
by the sum of the probabilities of the individual events in the union.

A.2 Hoeffding’s Inequality

Let X1, . . . , Xm be m independent random variables taking values in the inter-
val [0, 1]. Let X = 1

m

∑m
i=1 Xi and let µ = E[X]. Then for every t ≥ 0,

P
[∣∣∣X − µ∣∣∣ ≥ t] ≤ exp

(
−2mt2

)
. (A.2)

This inequality is known as the Hoeffding’s inequality [4].

27

Appendix B

Useful Inequalities

B.1 Convexity of exp

For any x ∈ R, the following inequality holds,

1 + x ≤ ex. (B.1)

The proof is immediate using the convexity of the exponential function.

29

Appendix C

Notation

C.1 Basic Mathematical Notation
N The set of natural numbers (not including 0)
Z The set of integers
Q The set of rational numbers
R The set of real numbers

C.2 The PAC Learning Framework

x A datum or the input part of an example
xi The ith co-ordinate (attribute) of example x

31

Bibliography

[1] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009.

[2] Ronald de Wolf. Philosophical applications of computational learning the-
ory : Chomskyan innateness and occam’s razor. Master’s thesis, Erasmus
Universiteit Rotterdam, 1997.

[3] Peter D Grünwald. The minimum description length principle. MIT press,
2007.

[4] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–30,
1963. ISSN 01621459. URL http://www.jstor.org/stable/2282952.

[5] Edwin T Jaynes. Probability theory: The logic of science. Cambridge
university press, 2003.

[6] Michael J. Kearns and Umesh K. Vazirani. An Introduction to Computa-
tional Learning Theory. The MIT Press, 1994.

[7] Christos H Papadimitriou. Computational complexity. John Wiley and Sons
Ltd., 2003.

[8] Leslie Valiant. A theory of the learnable. Communications of the ACM, 27
(11):1134–1142, 1984.

33

Index

3-term-DNF, 12

Boole’s inequality, see union bound
boolean circuit, 17
boolean hypercube, 7

clauses, see disjunctions
concept class, 5
conjunctions, 9
consistent learning, 22

disjunctions, 11
disjunctive normal form, see DNF
DNF, 7

error, 5
example oracle, 5

Hoeffding’s inequality, 27
hypothesis class, 16

improper learning, 17
instance size, 7
instance space, 5

k-CNF, 11

linear threshold functions, 18
LTF, see linear threshold functions

PAC learning, 16
Take I, 5
Take II, 6

parities, 18
proper learning, 17

randomized polynomial time, 12
representation scheme, 7
representation size, 7
RP, see randomized polynomial time

size, see representation size

union bound, 27

35

