
Computational Learning Theory
Learning Decision Trees via the Fourier Transform

Lecturer: James Worrell

Introduction

In the following two lectures we present an algorithm, due to Kushilevitz and Mansour, for learning
Boolean functions represented as decision trees. We work within a model in which the learner has query
access to the target function and must produce with high probability a hypothesis that has low error with
respect to the uniform distribution on the input space. Specifically, if f : {0, 1}n → {−1,+1} is the
target function and ε, δ > 0 are given accuracy and confidence parameters, we require the learner to
output a hypothesis h : {0, 1}n → {−1,+1} such that with probability at least 1 − δ (with respect to
the internal randomisation of the learner)

Pr
x∼Un

(h(x) 6= f(x)) ≤ ε ,

where Un denotes the uniform distribution on {0, 1}n. We further require that learning algorithm to run
in time polynomial in n, 1ε ,

1
δ and the size m of the smallest decision tree representing the function.

The basic idea of the algorithm of Kushilevitz and Mansour is to approximate the target function by
using membership queries to compute a polynomial-size subset of its Fourier coefficients, namely those
that are suitably large in magnitude. Note that no polynomial-time algorithm is known that PAC learns
decision trees under the uniform distribution (i.e., when we only have access to uniformly distributed
random examples rather than membership queries).

Background

A decision tree on n Boolean variables is a binary tree such that the leaves have labels chosen from
{−1,+1}, and the internal nodes have exactly two children (respectively distinguished as the left child
and right child) and labels chosen from {1, . . . , n}. A vector x ∈ {0, 1}n determines a path from the
root to a unique leaf according to the rule at an internal node with label i, take the left child if xi = 0
and take the right child if xi = 1. Such a decision tree determines a function {0, 1}n → {−1,+1} in
which each input is mapped to the label of the leaf that it determines.

We consider R{0,1}n as a real vector space, with inner product given by

〈f, g〉 := E
x∼Un

[f(x)g(x)] =
1

2n

∑
x∈{0,1}n

f(x)g(x) ,

i.e., a scaled version of the usual inner product. We define the norm of f ∈ R{0,1}n to be

‖f‖2 := 〈f, f〉1/2 = Ex[f(x)2]1/2 .

With respect to the inner product above, the collection of parity functions {χα : α ∈ {0, 1}n},
given by

χα(x) =

{
+1 if x · α is even
−1 if x · α is odd

,

forms an orthonormal basis. (We leave it as an exercise to verify this claim.) In particular, every function
f : {0, 1}n → R can be written as a linear combination f =

∑
α f̂(α)χα, where f̂(α) := 〈f, χα〉. The

coefficients in this expansion are called the Fourier coefficients of f .
We conclude by stating two useful properties of the functions χα. We leave the proofs as exercises.
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• Parseval’s identity: for every f , ‖f‖22 =
∑

α |f̂(α)|2.

• For all α, β ∈ {0, 1}n, χαχβ = χα⊕β (where the product of functions is pointwise and⊕ denotes
pointwise exclusive or).

Approximating Decision Trees

A Boolean function f : {0, 1}n → {−1,+1} necessarily satisfies ‖f‖2 = 1. For such an f we have∑
α |f̂(α)|2 = 1 by Parseval’s identity. However the sum

∑
α |f̂(α)| can potentially be exponential in

n (specifically when the coefficients are “spread out”, i.e., all roughly equal). Intuitively, the following
proposition says that the vector of Fourier coefficients of a decision tree has relatively few large values.

Proposition 1. If f : {0, 1}n → {−1,+1} is represented by a decision tree with m leaves then∑
α |f̂(α)| ≤ m.

Proof. Let L denote the set of leaves of the decision tree. Given v ∈ L, let `v be its label, I(v) ⊆
{0, 1}n the set of inputs leading to v, and Vars(v) ⊆ {1, . . . , n} the set of labels occurring along the
unique path from the root to v. Then we have∑

α∈{0,1}n
|f̂(α)| =

1

2n

∑
α∈{0,1}n

∣∣∣ ∑
x∈{0,1}n

f(x)χα(x)
∣∣∣

=
1

2n

∑
α∈{0,1}n

∣∣∣∑
v∈L

∑
x∈I(v)

`v χα(x)
∣∣∣

≤ 1

2n

∑
α∈{0,1}n

∑
v∈L

∣∣∣ ∑
x∈I(v)

`v χα(x)
∣∣∣

︸ ︷︷ ︸
Sα,v

.

Now if α and v are such that αi = 0 for all i 6∈ Vars(v) then χα is constant on I(v) and hence

Sα,v = |I(v)| = 2n−|Vars(v)|;

otherwise Sα,v = 0. For each v ∈ L the number of α such that αi = 0 for all i 6∈ Vars(v) is 2|Vars(v)|.
Thus we have ∑

α∈{0,1}n
|f̂(α)| ≤ 1

2n
·m · 2|Vars(v)| · 2n−|Vars(v)| = m.

The benefit of the above concentration result is that we can approximate f by a Fourier expansion
in which we take only the largest few Fourier coefficients.

Proposition 2. Let f : {0, 1}n → {−1,+1} and m be such that
∑

α |f̂(α)| ≤ m and let ε > 0 be
given. Define g : {0, 1}n → R by

∑
α:|f̂(α)|≥ ε

m

f̂(α)χα. Then ‖f − g‖22 ≤ ε.

2



Proof. We have that f − g =
∑

α:|f̂(α)|< ε
m

f̂(α)χα. Thus, by Parseval’s identity,

‖f − g‖22 =
∑

α:|f̂(α)|< ε
m

|f̂(α)|2

<
ε

m

∑
α:|f̂(α)|< ε

m

|f̂(α)|

≤ ε

m
m by Proposition 1

= ε .

Corollary 1. Let f, g be as in Proposition 2. Define h : {0, 1}n → {−1,+1} by h(x) := sgn(g(x)).
Then

Pr
x∼Un

(h(x) 6= f(x)) ≤ ε

4

Proof. We have
I(h(x) 6= f(x)) = 1

4 |h(x)− f(x)|
2 ≤ 1

4 |g(x)− f(x)|
2 .

Hence

Prx(h(x) 6= f(x)) = Ex[I(h(x) 6= f(x))]

≤ 1

4
E[(g(x)− f(x))2]

=
1

4
‖g − f‖22

≤ ε

4
by Proposition 2 .

Say that a Fourier coefficient f̂(α) is “large” if it has magnitude at least ε/m. Since ‖f‖22 = 1,
the number of large Fourier coefficients is at most m2/ε2, i.e., polynomial in 1/ε and m. The rough
idea of the learning algorithm is to use membership queries to find all large Fourier coefficients and to
form the hypothesis h described in Corollary 1. The tricky part, to be described in the next lecture, is
to efficiently find these large elements within the set of all 2n Fourier coefficients. Using membership
queries and Hoeffding’s inequality we can estimate any given Fourier coefficient to high precision, but
brute-force examination of all Fourier coefficients would clearly yield a running time exponential in n.
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