Computational Learning Theory Learning Decision Trees via the Fourier Transform

Lecturer: James Worrell

Introduction

In the following two lectures we present an algorithm, due to Kushilevitz and Mansour, for learning Boolean functions represented as decision trees. We work within a model in which the learner has query access to the target function and must produce with high probability a hypothesis that has low error with respect to the uniform distribution on the input space. Specifically, if $f:\{0,1\}^{n} \rightarrow\{-1,+1\}$ is the target function and $\varepsilon, \delta>0$ are given accuracy and confidence parameters, we require the learner to output a hypothesis $h:\{0,1\}^{n} \rightarrow\{-1,+1\}$ such that with probability at least $1-\delta$ (with respect to the internal randomisation of the learner)

$$
\operatorname{Pr}_{x \sim U_{n}}(h(x) \neq f(x)) \leq \varepsilon,
$$

where U_{n} denotes the uniform distribution on $\{0,1\}^{n}$. We further require that learning algorithm to run in time polynomial in $n, \frac{1}{\varepsilon}, \frac{1}{\delta}$ and the size m of the smallest decision tree representing the function.

The basic idea of the algorithm of Kushilevitz and Mansour is to approximate the target function by using membership queries to compute a polynomial-size subset of its Fourier coefficients, namely those that are suitably large in magnitude. Note that no polynomial-time algorithm is known that PAC learns decision trees under the uniform distribution (i.e., when we only have access to uniformly distributed random examples rather than membership queries).

Background

A decision tree on n Boolean variables is a binary tree such that the leaves have labels chosen from $\{-1,+1\}$, and the internal nodes have exactly two children (respectively distinguished as the left child and right child) and labels chosen from $\{1, \ldots, n\}$. A vector $x \in\{0,1\}^{n}$ determines a path from the root to a unique leaf according to the rule at an internal node with label i, take the left child if $x_{i}=0$ and take the right child if $x_{i}=1$. Such a decision tree determines a function $\{0,1\}^{n} \rightarrow\{-1,+1\}$ in which each input is mapped to the label of the leaf that it determines.

We consider $\mathbb{R}^{\{0,1\}^{n}}$ as a real vector space, with inner product given by

$$
\langle f, g\rangle:=\underset{x \sim U_{n}}{\mathbb{E}}[f(x) g(x)]=\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}} f(x) g(x),
$$

i.e., a scaled version of the usual inner product. We define the norm of $f \in \mathbb{R}^{\{0,1\}^{n}}$ to be

$$
\|f\|_{2}:=\langle f, f\rangle^{1 / 2}=\mathbb{E}_{x}\left[f(x)^{2}\right]^{1 / 2} .
$$

With respect to the inner product above, the collection of parity functions $\left\{\chi_{\alpha}: \alpha \in\{0,1\}^{n}\right\}$, given by

$$
\chi_{\alpha}(x)= \begin{cases}+1 & \text { if } x \cdot \alpha \text { is even } \\ -1 & \text { if } x \cdot \alpha \text { is odd }\end{cases}
$$

forms an orthonormal basis. (We leave it as an exercise to verify this claim.) In particular, every function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ can be written as a linear combination $f=\sum_{\alpha} \hat{f}(\alpha) \chi_{\alpha}$, where $\hat{f}(\alpha):=\left\langle f, \chi_{\alpha}\right\rangle$. The coefficients in this expansion are called the Fourier coefficients of f.

We conclude by stating two useful properties of the functions χ_{α}. We leave the proofs as exercises.

- Parseval's identity: for every $f,\|f\|_{2}^{2}=\sum_{\alpha}|\hat{f}(\alpha)|^{2}$.
- For all $\alpha, \beta \in\{0,1\}^{n}$, $\chi_{\alpha} \chi_{\beta}=\chi_{\alpha \oplus \beta}$ (where the product of functions is pointwise and \oplus denotes pointwise exclusive or).

Approximating Decision Trees

A Boolean function $f:\{0,1\}^{n} \rightarrow\{-1,+1\}$ necessarily satisfies $\|f\|_{2}=1$. For such an f we have $\sum_{\alpha}|\hat{f}(\alpha)|^{2}=1$ by Parseval's identity. However the sum $\sum_{\alpha}|\hat{f}(\alpha)|$ can potentially be exponential in n (specifically when the coefficients are "spread out", i.e., all roughly equal). Intuitively, the following proposition says that the vector of Fourier coefficients of a decision tree has relatively few large values.

Proposition 1. If $f:\{0,1\}^{n} \rightarrow\{-1,+1\}$ is represented by a decision tree with m leaves then $\sum_{\alpha}|\hat{f}(\alpha)| \leq m$.

Proof. Let L denote the set of leaves of the decision tree. Given $v \in L$, let ℓ_{v} be its label, $I(v) \subseteq$ $\{0,1\}^{n}$ the set of inputs leading to v, and $\operatorname{Vars}(v) \subseteq\{1, \ldots, n\}$ the set of labels occurring along the unique path from the root to v. Then we have

$$
\begin{aligned}
\sum_{\alpha \in\{0,1\}^{n}}|\hat{f}(\alpha)| & =\frac{1}{2^{n}} \sum_{\alpha \in\{0,1\}^{n}}\left|\sum_{x \in\{0,1\}^{n}} f(x) \chi_{\alpha}(x)\right| \\
& =\frac{1}{2^{n}} \sum_{\alpha \in\{0,1\}^{n}}\left|\sum_{v \in L} \sum_{x \in I(v)} \ell_{v} \chi_{\alpha}(x)\right| \\
& \leq \frac{1}{2^{n}} \sum_{\alpha \in\{0,1\}^{n}} \sum_{v \in L} \underbrace{\left|\sum_{x \in I(v)} \ell_{v} \chi_{\alpha}(x)\right|}_{S_{\alpha, v}} .
\end{aligned}
$$

Now if α and v are such that $\alpha_{i}=0$ for all $i \notin \operatorname{Vars}(v)$ then χ_{α} is constant on $I(v)$ and hence

$$
S_{\alpha, v}=|I(v)|=2^{n-|\operatorname{Vars}(v)|}
$$

otherwise $S_{\alpha, v}=0$. For each $v \in L$ the number of α such that $\alpha_{i}=0$ for all $i \notin \operatorname{Vars}(v)$ is $2^{|\operatorname{Vars}(v)|}$. Thus we have

$$
\sum_{\alpha \in\{0,1\}^{n}}|\hat{f}(\alpha)| \leq \frac{1}{2^{n}} \cdot m \cdot 2^{|\operatorname{Vars}(v)|} \cdot 2^{n-|\operatorname{Vars}(v)|}=m
$$

The benefit of the above concentration result is that we can approximate f by a Fourier expansion in which we take only the largest few Fourier coefficients.
Proposition 2. Let $f:\{0,1\}^{n} \rightarrow\{-1,+1\}$ and m be such that $\sum_{\alpha}|\hat{f}(\alpha)| \leq m$ and let $\varepsilon>0$ be given. Define $g:\{0,1\}^{n} \rightarrow \mathbb{R}$ by $\sum_{\alpha:|\hat{f}(\alpha)| \geq \frac{\varepsilon}{m}} \hat{f}(\alpha) \chi_{\alpha}$. Then $\|f-g\|_{2}^{2} \leq \varepsilon$.

Proof. We have that $f-g=\sum_{\alpha:|\hat{f}(\alpha)|<\frac{\varepsilon}{m}} \hat{f}(\alpha) \chi_{\alpha}$. Thus, by Parseval's identity,

$$
\begin{aligned}
\|f-g\|_{2}^{2} & =\sum_{\alpha:|\hat{f}(\alpha)|<\frac{\varepsilon}{m}}|\hat{f}(\alpha)|^{2} \\
& <\frac{\varepsilon}{m} \sum_{\alpha:|\hat{f}(\alpha)|<\frac{\varepsilon}{m}}|\hat{f}(\alpha)| \\
& \leq \frac{\varepsilon}{m} m \quad \text { by Proposition } 1 \\
& =\varepsilon .
\end{aligned}
$$

Corollary 1. Let f, g be as in Proposition 2. Define $h:\{0,1\}^{n} \rightarrow\{-1,+1\}$ by $h(x):=\operatorname{sgn}(g(x))$. Then

$$
\operatorname{Pr}_{x \sim U_{n}}(h(x) \neq f(x)) \leq \frac{\varepsilon}{4}
$$

Proof. We have

$$
\mathbb{I}(h(x) \neq f(x))=\frac{1}{4}|h(x)-f(x)|^{2} \leq \frac{1}{4}|g(x)-f(x)|^{2} .
$$

Hence

$$
\begin{aligned}
\operatorname{Pr}_{x}(h(x) \neq f(x)) & =\mathbb{E}_{x}[\mathbb{I}(h(x) \neq f(x))] \\
& \leq \frac{1}{4} \mathbb{E}\left[(g(x)-f(x))^{2}\right] \\
& =\frac{1}{4}\|g-f\|_{2}^{2} \\
& \leq \frac{\varepsilon}{4} \quad \text { by Proposition } 2 .
\end{aligned}
$$

Say that a Fourier coefficient $\hat{f}(\alpha)$ is "large" if it has magnitude at least ε / m. Since $\|f\|_{2}^{2}=1$, the number of large Fourier coefficients is at most m^{2} / ε^{2}, i.e., polynomial in $1 / \varepsilon$ and m. The rough idea of the learning algorithm is to use membership queries to find all large Fourier coefficients and to form the hypothesis h described in Corollary 1. The tricky part, to be described in the next lecture, is to efficiently find these large elements within the set of all 2^{n} Fourier coefficients. Using membership queries and Hoeffding's inequality we can estimate any given Fourier coefficient to high precision, but brute-force examination of all Fourier coefficients would clearly yield a running time exponential in n.

