
Computational Learning Theory

11 : Online Learning with Expert Advice

Lecturer: Varun Kanade

In this lecture, we will move away from the prediction learning framework, either binary or
real-valued, and consider a more abstract sequential decision making framework. The general
framework turns out to be very powerful, and as applications, we will re-derive a boosting
algorithm similar to AdaBoost, as well as see a proof of von Neumann’s Min-Max theorem.

1 Learning with Expert Advice

We consider a sequential decision making problem as a repeated game between a learning
algorithm or a decision maker (DM) and an environment. The game will be played for T
rounds and we assume that T is known to the decision maker.1 The decision maker has to choose
between n options at each time step; the decision maker can pick a probability distribution over
n options, i.e. a point from the probability simplex,

∆n = {x | x ∈ Rn, xi ≥ 0,
∑
i

xi = 1}.

These options are sometimes called experts; this is because we can view this as the decision
maker having advice from n different experts and seeking to combine the advice to come up
with its own decision rule. Hence the name learning with expert advice. The game proceeds in
rounds as follows. For t = 1, 2, . . . , T :

• At time t, DM picks xt ∈ ∆n.

• The environment picks a loss vector lt ∈ [0, 1]n.

• The loss suffered by DM at time t is xt · lt and DM observes the entire loss vector, lt.

First, we consider the choice of the decision maker. The decision maker may choose xt at time
t based on all the available information, i.e. x1, l1, . . . ,xt−1, lt−1. In principle, we would allow
xt to be an arbitrary computable function of the history, though the algorithms we study turn
out to be computationally efficient.

Second, we can consider the loss vectors lt produced by the environment. We will not constrain
the environment beyond the requirement that each entry of lt be in the interval [0, 1]. In fact,
the environment may chose the loss vector lt in response to all the available history, including
the choice xt made by the decision maker at time t.

How do we measure performance of the decision maker in this case? Clearly simply requiring
the DM to minimise loss across the T time-steps is not sufficient as the environment could
simply require all n options to have a loss of 1 at each time-step. Instead, we will be interested
in a notion of relative performance with respect to a class of strategies. We will look at the
simplest set of strategies, i.e. strategies that don’t change over time. However, we will find the
best such strategy in hindsight. We define the notion of regret of the decision maker, DM, as,

Regret(DM) =
T∑
t=1

xt · lt − min
x∈∆n

T∑
t=1

x · lt.

1This is not a serious restriction. For tricks to remove this restriction refer to Cesa-Bianchi and Lugosi (2006).

1



It is worth commenting on the notion of regret before we design algorithms to minimise regret.
The decision maker has the advantage of being able to change its decisions every time-step but
has the disadvantage of not knowing the future. On the other hand, the performance comparison
is to a fixed strategy which has the benefit of hindsight. (It is worth observing that regret may
be negative in this case.) What this suggests is that if there was a fixed strategy that would
have performed “well”, then having low regret would suggest that the decision maker performs
almost as well. Thus, if the environment was relatively benign with loss vectors not changing
very rapidly and the same options doing well over time, we would expect the decision maker to
eventually figure out a good distribution over options. On the other hand, if the environment
was very adversarial and no fixed strategy could have achieved a good performance then we
would not expect the decision maker to have low loss even if it had low regret. Of course, one
may take the view that the comparison to fixed strategies is too restrictive and we would like
the decision maker to have low regret with more complex strategies. Indeed, such problems can
be considered and the interested reader is referred to the excellent book by Cesa-Bianchi and
Lugosi (2006) for several generalisations and extensions.

A natural interpretation of the above formulation is in terms of betting over n differen options
which may change in value over time in uncertain ways. We can spread a unit amount of money
every day and we would like our long term performance to be not much worse than the single
best option (or single distribution) in hindsight. In fact, because the loss function l · x is linear
in x, the minimum is (also) achieved at a vertex of the simplex ∆n. So we may in fact simply
compare our performance with the best single option and rewrite the definition of regret as,

Regret(DM) =

T∑
t=1

xt · lt −min
i∈[n]

T∑
t=1

lt,i.

2 Follow The Leader

We will use the notation Lt =
∑t−1

s=1 ls. A natural strategy is to pick xt at time t that minimises
the cumulative historical loss, i.e. pick xt ∈ ∆n that minimises xt · Lt. In fact, this xt can
be chosen to be one of the vertices of the simplex ∆n, i.e. we may pick xt with xt,i = 1 for
i ∈ argmini Lt,i and xt,j = 0 for j 6= i. This algorithm is sometimes called Follow-the-Leader as
it picks the strategy that has historically proved the best.

It turns out however that a strategy that would have perfomed best on historical observations,
may not perform well in the future, and indeed this algorithm does not get a good bound on the
regret. The following example with only two options, when T is even, establishes the problem
with this strategy.

l1 l2 l3 l4 . . . lT
Option 1 0.5 0 1 0 . . . 0

Option 2 0 1 0 1 . . . 1

The strategy may pick either option at time t = 1, but subsequently it would always pick option
2 in even time steps and option 1 in odd time steps. Thus, it would incur a total loss of at least
T − 1. However, the first option only has a loss of T/2 − 1/2. Thus, the regret incurred is at
least T/2 − 1/2 which grows linearly in T . At least asymptotically this is a completely trivial
regret bound as no algorithm incurs a loss of more than T as the losses are constrained to be
in [0, 1] at each time step.

Although the Follow-the-Leader strategy does not work well in this particular case, there are
online optimization problems in which the strategy does give non-trivial (and in fact close to
optimal) regret bounds. The problem in this specific setting is that the decision rule is too
unstable, i.e. it may change drastically at every time step based on small changes to the loss

2



vectors. In the next section, we will see a small modification to the algorithm that is more
stable that does actually give optimal regret bounds.

3 The Multiplicative Weight Update Algorithm (MWUA)

Algorithm 1 presents the Multiplicative Weight Update Algorithm (MWUA) for the sequential
decision making problem. This algorithm, or close variants, go by various names including
Weighted Majority, Exponentially-weighted Forecaster, Hedge, etc. The reason for these names
and indeed variants is that very similar abstractions of this sequential decision making problem
have been studied in various fields including information theory, game theory, learning theory,
complexity theory, among others. The excellent survey article by Arora et al. (2012) gives several
variants of this algorithm and applications to approximation algorithms and optimization. The
book by Cesa-Bianchi and Lugosi (2006) considers various problems in learning theory, game
theory, information theory and optimization.

Algorithm 1 The Multiplicative Weight Update Algorithm (MWUA)

State w1 = (1, . . . , 1) ∈ Rn
for t = 1, 2, . . . , T do

xt = wt
Zt

, Zt =
∑n

i=1wt,i
Play xt
Receive loss xt · lt
Observe lt
For each i, let wt+1,i = wt,i · exp(−ηlt,i)

end for

Before we analyse the algorithm, let us see in what sense this algorithm is a tweak of the Follow-
the-leader Algorithm. Let Lt =

∑t−1
s=1 ls as defined above. Then the Follow-the-leader strategy

simply picks xt that minimises Lt, which can be represented by vectors in argminx∈∆n
x ·Lt. In

fact, all vectors in argminx∈∆n
x · Lt are exactly the subgradients of the function f : Rn → R,

given by f(z) = mini zi at the point Lt. Instead, if we define the function,

fη(z) = −1

η
ln

 n∑
i=1

e−ηzi

 ,

then it is easy to see that in the limit as η →∞ fη(z) = mini zi. Thus, fη is from a family of
soft min functions, which are differentiable; the gradient of fη is called the argsoftmin function
and indeed the MWUA algorithm sets xt = ∇fη(Lt). The softening of the min function can be
viewed as a form of regularization. Yet another view of the xt picked by the algorithm is the
following, xt is the constrained minimum of the following optimization problem,

min
x∈∆n

Lt · x−
1

η
H(x).

where H(η) = −
∑n

i=1 xi lnxi is the entropy function. The negative entropy term above acts
as a regularizer. Minimising the function Lt · x pushes the solution to a corner of the simplex,
whereas minimising the negative entropy term pushes it towards the centre of the simplex, i.e.
encourages more hedging.

Indeed, many analyses of the regret bound of MWUA are possible using the interpretations
above, some of which lead to more insightful proofs. We will consider a short potential-based
proof which uses the Zt as a potential function.

3



Theorem 1. For the MWUA algorithm run with η =
√

n
T , we have,

Regret(MWUA) ≤ 2
√
T lnn.

Proof. Consider the following,

Zt+1

Zt
=

∑n
i=1wt+1,i

Zt
=

∑n
i=1wt,i exp(−ηlt,i)

Zt

By the convexity of z 7→ e−ηz, we have exp(−ηz) ≤ 1 + (e−η − 1)z for z ∈ [0, 1]. Thus, we have,

Zt+1

Zt
≤

t∑
i=1

wt,i
Zt
· (1 + (e−η − 1)lt,i)

= 1 + (e−η − 1)xt · lt.

Above, we have used the definition xt = wt/Zt. Further, using the fact that 1 + x ≤ ex, we
have,

Zt+1

Zt
≤ exp

(
(e−η − 1)xt · lt

)
.

We can multiply the ratios Zt+1/Zt for t = 1, . . . , T , and use the bound above to obtain,

ZT+1

Z1
≤ exp

(e−η − 1) ·
T∑
t=1

xt · lt

 . (1)

On the other side, we note that wt,i = exp(−η
∑t−1

s=1 ls,i). So we have the following for each
i ∈ [n],

ZT+1

Z1
≥
wT+1,i

n
=

exp
(
−η
∑T

t=1 lt,i

)
n

. (2)

Combining Equations (1) and (2), and taking natural logarithms, we have for each i ∈ [n],

−η
T∑
t=1

lt,i − lnn ≤ (e−η − 1)

T∑
t=1

xt · lt.

Moving lnn to the RHS and adding η
∑T

t=1 xt · lt to both sides, we get,

η

 T∑
t=1

xt · lt −
T∑
t=1

lt,i

 ≤ (e−η − (1− η))

T∑
t=1

xt · lt + lnn.

Using the fact that e−η ≤ 1−η+η2 for η ∈ [0, 1] and dividing both sides by η, we have for all i,

T∑
t=1

xt · lt −
T∑
t=1

lt,i ≤ η
T∑
t=1

xt · lt +
lnn

η
.

4



Finally, noticing that xt · lt ≤ 1 for each t, setting η as in the statement of the theorem, and
observing that because the above holds for each i ∈ [n], by linearity, it applies to each x ∈ ∆n,
we get the result as follows:

T∑
t=1

xt · lt −
T∑
t=1

n∑
i=1

xilt,i ≤ ηT +
lnn

η
≤ 2
√
T lnn.

As the above applies to each x ∈ ∆n, we are done.

We remark that the choice xt made by the algorithm at time t only depends on the loss vectors
l1, . . . , lt−1 given by the environment (in fact only on their sum). There is no dependence
whatsoever on the past choices made by the algorithm, and the algorithm itself is completely
deterministic. Hence, even if the environment completely adversarially picks the loss vectors
lt the algorithm still retains the guarantee. In fact, there is no need for the environment to
wait to see the choice made by the algorithm as it can be computed directly using the previous
loss vectors. In this sense, the MWUA algorithm achieves guarantees against adaptive and
adversarial environments. This particular aspect will be useful in applications to game theory.

3.1 Lower Bound

In this section, we will give a sketch of why the bound achieved in Theorem 1 is essentially tight
(up to constant factors). We will not give a formal proof, though writing a formal proof is not
very difficult. We will also only establish a lower bound of Ω(

√
T ) for deterministic algorithms,

when there are only n = 2 options. The environment at time t picks the loss vector (1, 0) or (0, 1)
with equal probability independently at each time step. Now for any algorithm, its expected
loss is exactly T/2. On the other hand the expectation of mini∈{1,2}

∑T
t=1 lt,i is T/2− Ω(

√
T ).

This follows from a simple exercise: if X ∼ Binomial(T, 1/2), what is the E
[
min{X,T −X}

]
?

This shows that the
√
T factor in the regret bound is tight; a slightly more detailed construction

shows that
√

lnn is also required in the regret bound as a multiplicative factor. The formal
proof appears in Cesa-Bianchi and Lugosi (2006).

4 Application: Boosting Algorithm

In this section, we will see an application of the MWUA algorithm to get a boosting algorithm.
As in the case of AdaBoost, we will assume that the weak learner returns hypotheses from a
hypothesis class, H, of finite VC dimension and focus on finding a (combined) hypothesis that
is consistent with the training data. We will not worry about generalization error here as it
can be done by bounding the VC dimension of the resulting classifier exactly as in the case of
AdaBoost. In fact, there are many similarities between the AdaBoost algorithm and MWUA
and indeed in their analyses.

Let S = {(x1, y1), . . . , (xm, ym)} be a training dataset with m points, where yi = c(xi) for some
c ∈ C. Here C is the concept class for which we have a weak learning algorithm available.

We are going to treat this as a sequential decision making problem with m options. At each time
t, the decision maker, DM, will use MWUA to pick a distribution, which we will call dt ∈ ∆m

to distinguish it from the data (x, y).

We will also simulate the environment. For this reason, we will use the weak learning algorithm,
WeakLearn. We shall assume for simplicity that the weak learning algorithm succeeds with
probability 1 instead of probability 1 − δ. At time t, let ht be the hypothesis returned by the
weak learning algorithm with respect to distribution dt ∈ ∆m. Note that the distribution dt,
puts probability mass dt,i on (xi, yi) for i = 1, . . . ,m. In particular, we have err(ht;dt) ≤ 1

2 −γ,

5



where γ is the parameter of WeakLearn. We define the loss vector lt ∈ [0, 1]m as follows,
lt,i = 1 if ht(xi) = yi and lt,i = 0 otherwise. Based on the construction and the property of the
weak learner, we have dt · lt = 1− err(ht;dt) ≥ 1

2 + γ for every t.

We can make use of the regret guarantee. Note that lt,i = 1(ht(xi) = yi). Theorem 1 gives us
that provided the DM uses MWUA to generate the decisions dt ∈ ∆m, we have for each i,

T∑
t=1

dt · lt −
T∑
t=1

1(ht(xi) = yi) ≤ 2
√
T lnm.

Using, the fact that dt · lt ≥ 1/2 + γ for each t, and rearranging, we get,

T ·
(

1

2
+ γ

)
− 2
√
T lnm ≤

T∑
t=1

1(ht(xi) = yi).

Hence,

T

2
+
√
T · (γ

√
T − 2

√
lnm) ≤

T∑
t=1

1(ht(xi) = yi).

Observe that for T > 4 lnm/γ2, the LHS is strictly larger than T/2. This means that the
majority of the hypotheses ht classify the ith example (xi, yi) correctly for every i. Thus simply
outputting majority{h1(x), . . . , hT (x)} will give a hypothesis that is consistent with the training
set. Note that the number of calls made to the weak learning algorithm is of the same order as
that made by Adaboost and as the majority function can be written as thresholds of hypotheses
from the hypothesis class used by WeakLearn, the generalization error can be bounded in
exactly the same way as in the analysis of AdaBoost.

5 Application: von Neumann’s Min-Max Theorem

As another application of the MWUA algorithm, we will give a proof von Neumann’s Min-Max
theorem. We will be brief and terse in our description of two player zero-sum games. Readers
unfamiliar with these notions may wish to read the introductory chapter in a book on game
theory.

We will consider finite two player zero-sum games with bounded payoffs. We will assume that
all payoffs are bounded in [0, 1]. The game has two players, typically called a row player and a
column player. The game is specificed as an n×m matrix, A, with n rows and m columns. The
row player has to pick one of n options and the column player has to pick one of m options. If the
row player picks i and the column player picks j, then the row player gets a payoff of Aij . (As
it is a zero-sum game, the payoff to the column player is −Aij .) Clearly, there is an advantage
to moving second as you can observe the option picked by the other player. Suppose the row
player moves first: if they pick i, the column player will certainly pick j that will minimize the
payoff of the row player (as it is a zero sum game), resulting in a payoff of minj Aij ; thus to
maximise their payoff they will pick i for which this quantity is the largest. In other words, the
best achievable payoff for the row player is maxi minj Aij .

An entirely identical arugment shows that the best payoff achieved by the row player if they
go second is minj maxiAij . This is of course assuming that both players are playing rationally.
Thus, clearly we have that,

max
i

min
j
Aij ≤ min

j
max
i
Aij .

6



When players are forced to pick a single option, something which is known as pure strategies,
the above inequality can indeed be strict. The following simple game in which both players
have two options establishes a strict inequality.

1 2

1 3 2

2 1 4

For this game, maxi minj Aij = 2 and minj maxiAij = 3. However, we can also consider mixed
strategies, where rather than picking a single option, each player picks a distribution over their
options. The other player can see the distribution of their competitor, but not the actual
random choice. For example, think of playing rock-paper-scissors with someone, where you
know their (random) strategy, but can’t predict what particular random choice they will make
when actually playing the game. Now suppose the row player has a strategy x ∈ ∆n and a
column player has strategy y ∈ ∆m, then the payoff to the row player (in expectation) is,

E
i∼x,j∼y

[
Aij
]

= x>Ay.

We can similarly define optimal strategies for the row player depending on whether they are
going first or second. When the row player goes first, the optimal value they can achieve is
called the maxmin value, denoted by vmaxmin, and defined as,

vmaxmin = max
x∈∆n

min
y∈∆m

x>Ay.

Similarly, the best value achievable by the row player if they go second is the minmax value,
denoted by vminmax, and defined as,

vminmax = min
y∈∆m

max
x∈∆n

x>Ay.

As in the previous case, we can immediately see that vmaxmin ≤ vminmax.2 What von Neumann’s
theorem states is that, for finite two player zero-sum games, vmaxmin = vminmax.

We could of course frame this theorem in terms of losses rather than payoffs, but that would
deviate from standard statements of this result. Instead, we make a series of observations. It is
without loss of generality to assume that payoffs are in [0, 1]. First, we can always make payoffs
for the row player to be positive because as solution concepts, zero-sum games and constant-
sum games are identical. Second, we can always scale payoffs so that they are in the interval
[0, 1]. Finally, we can replace losses in the sequential decision making problem by payoffs, or
rather consider loss vectors as coming from payoff vectors, pt and set lt = 1−pt. Then, we can
rephrase the statement of Theorem 1 as,

Regret(MWUA) = max
x∈∆n

T∑
t=1

x · pt −
T∑
t=1

xt · pt ≤ 2
√
T lnn. (3)

We will simply run the algorithm by using lt = 1− pt as our loss vectors when we are actually
given payoff vectors pt.

With that out of the way, we are ready to give a proof of von Neumann’s Min-Max theorem
using the MWUA algorithm. The row player will implement the MWUA algorithm (with payoff

2Essentially, this side of the argument is weak duality, and von Neumann’s theorem states that strong duality
holds.

7



vectors suitably converted to loss vectors). Let xt ∈ ∆n be the strategy picked by MWUA at
time t. The column player picks yt as,

yt ∈ argmin
y

x>t Ay.

Clearly, we have that,

y>t Ay = min
y∈∆m

x>t Ay ≤ max
x∈∆n

min
y∈∆m

x>Ay = vmaxmin.

We set the payoff vector pt = Ayt ∈ [0, 1]n; and note that the above inequalities show that
xt · pt ≤ vminmax for all t. Hence,

T∑
t=1

xt · pt ≤ Tvmaxmin. (4)

On the other hand, we have,

max
x∈∆n

T∑
t=1

x · pt = T · max
x∈∆n

x>A
1

T

T∑
t=1

yt

≥ T · min
y∈∆m

max
x∈∆n

x>Ay = Tvminmax. (5)

Combining Eqns. (3), (4) and (5), we get that,

vminmax − vmaxmin ≤
1

T
· Regret(MWUA) ≤ 2

√
lnn

T
.

Since the above holds for all T ≥ 1, it must be that vminmax ≥ vmaxmin which completes the
proof of the theorem.

References

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge University
press, 2006.

8


