
Computational
Learning Theory

(Lecture Notes)

1
ε

1
δ

n
size(c)

Varun Kanade

Contents

Contents i

Preface iii

1 Probably Approximately Correct Learning 1
1.1 A Rectangle Learning Game . 1
1.2 Key Components of the PAC Learning Framework 4
1.3 Learning Conjunctions . 9
1.4 Hardness of Learning 3-term DNF 13
1.5 Learning 3-CNF vs 3-TERM-DNF 15
1.6 PAC Learning . 16
1.7 Exercises . 17
1.8 Chapter Notes . 19

2 Consistent Learning and Occam’s Razor 21
2.1 Occam’s Razor . 21
2.2 Consistent Learning . 22
2.3 Improved Sample Complexity 24
2.4 Exercises . 25

3 The Vapnik Chervonenkis Dimension 27
3.1 The Vapnik Chervonenkis (VC) Dimension 27
3.2 Growth Function . 30
3.3 Sample Complexity Upper Bound 32
3.4 Sample Complexity Lower Bounds 34
3.5 Consistent Learner for Linear Threshold Functions 36
3.6 Exercises . 37

4 Boosting 39
4.1 Weak Learnability . 39
4.2 The AdaBoost Algorithm . 40
4.3 Exercises . 43

5 Cryptographic Hardness of Learning 45
5.1 The Discrete Cube Root Problem 45
5.2 A learning problem based on DCRA 46
5.3 Chapter Notes . 48

6 Exact Learning using Membership and Equivalence Queries 51

i

ii CONTENTS

6.1 Exact Learning with Membership and Equivalence Queries . . 52
6.2 Exact Learning MONOTONE-DNF using MQ + EQ 53
6.3 Learning DFA . 55
6.4 Exercises . 59

7 Statistical Query Learning 61
7.1 Random Classification Noise Model 61
7.2 Statistical Query Model . 64
7.3 A hard-to-learn concept class 68
7.4 Exercises . 70
7.5 Bibliographic Notes . 70

8 Learning Real-valued Functions 73
8.1 Learning Real-Valued Functions 73
8.2 Projected Gradient Descent for Lipschitz functions 77
8.3 Rademacher Complexity . 79
8.4 Linear Regression . 85
8.5 Generalised Linear Models . 88

9 Mistake-Bounded Learning 93
9.1 Online Prediction Framework 93
9.2 Relationships to Other Models of Learning 96
9.3 The Halving Algorithm and Some Examples 97
9.4 Perceptron . 98
9.5 The Winnow Algorithm . 101

10 Online Learning with Expert Advice 105
10.1 Learning with Expert Advice 105
10.2 Follow The Leader . 107
10.3 The Multiplicative Weight Update Algorithm (MWUA) 107
10.4 Application: Boosting Algorithm 110
10.5 Application: von Neumann’s Min-Max Theorem 111

A Inequalities from Probability Theory 115
A.1 The Union Bound . 115
A.2 Hoeffding’s Inequality . 115
A.3 Chernoff Bound . 115

B Elementary Inequalities 117
B.1 Convexity of exp . 117
B.2 Auxilliary Lemmas . 117

C Notation 119
C.1 Basic Mathematical Notation 119
C.2 The PAC Learning Framework 119

Bibliography 121

Index 125

Preface

What is computational learning theory?

Machine learning techniques lie at the heart of many technological applications
that are used on a daily basis. When using a digital camera, the boxes that
appear around faces are produced using a machine learning algorithm. When
streaming portals such as BBC iPlayer or Netflix suggest what a user might like
to watch next, they are also using machine learning algorithms to provide these
recommendations. In fact, more likely than not, any substantial technology
that is in use these days has some component that uses machine learning
techniques.

The field of (computational) learning theory develops precise mathematical
formulations of the more vague notion of learning from data. Having precise
mathematical formulations allows one to answer questions such as:

(i) What types of functions are easy to learn?
(ii) Are there types of functions that are hard to learn?
(iii) How much data is required to learn a function of a particular type?
(iv) Howmuch computational power is needed to learn certain types of functions?

Positive as well as negative answers to these questions are of great interest.
For example, one of the key considerations is to design and analyse learning
algorithms that are guaranteed to learn certain types of functions using modest
amount of data and reasonable runnning time. For the most part, we will take
the view that as long as the resources used can be bounded by a polynomial
function of the problem size, the learning algorithm is efficient. Obviously, as
is the case in the analysis of algorithms, there may be situations where just
being polynomial time may not be considered efficient enough; the existence of
polynomial-time learning algorithms is however a good first step in separating
easy and hard learning problems. Some of the algorithms we study will not
run in polynomial time at all, but they will still be much better than brute
force algorithms.

There is a vast body of literature that is often called Statistical Learning
Theory. To some extent this distinction between statistical and computational
learning theory is rather artificial and we shall make use of several concepts
introduced in that theory such as VC dimension and Rademacher complexity.
In this course, greater emphasis will be placed on computational considerations.
Research in computational learning theory has uncovered interesting phenomena
such as the existence of certain types of functions that can be learnt if computational

iii

iv PREFACE

resources are not a consideration, but cannot be learnt in polynomial time.
Other examples demonstrate a tradeoff between the amount of data and the
algorithmic running time, i.e. the running time of the algorithm can be reduced
by using more data. More importantly, placing the question of learning in a
computational framework allows one to reason about other kinds of (computational)
resources such as memory, communication, privacy, etc. that may be a consideration
for the learning problem at hand.

Chapter 1

Probably Approximately Correct
Learning

Our goal in this chapter is to gradually build up the probably approximately
correct (PAC) learning framework while emphasizing the key components of the
learning model. We will discuss various model choices in detail; the exercises
and some results in later chapters explore the robustness of the PAC learning
framework to slight variants of these design choices. As the goal of computational
learning theory is to shed light on the phenomenon of automated learning, such
robustness is of key importance.

1.1 A Rectangle Learning Game

Let us consider the following rectangle learning game. We are given some points
in the Euclidean plane, some of which are labeled positive (+) and others
negative (−). Furthermore, we are guaranteed that there is an axis-aligned
rectangle such that all the points inside it are labelled positive, while those
outside are labelled negative. However, this rectangle itself is not revealed
to us. Our goal is to produce a rectangle that is “close” to the true hidden
rectangle that was used to label the observed data (see Fig. 1.1(a)).

Although the primary purpose of this example is pedagogical, it may be
worth providing a scenario where such a (fake) learning problem may be relevant.
Suppose that the two dimensions measure the curvature and length of bananas.
The points that are labelled positive have medium curvature and medium
length and represent the bananas that would pass “stringent” EU regulations.
However, the actual lower and upper limits that “define” medium in each
dimension are hidden. Thus, we wish to learn some rectangle that will be good
enough to predict whether bananas we produce would pass the regulators’ tests
or not.

Let R be the unknown rectangle used to label the points. We can express the
labelling process using a boolean function cR : R2 → {+,−}, where cR(x) = +,
if x is inside the rectangle R and cR(x) = −, otherwise.1

1We refer to functions whose range has size at most 2 as boolean functions. From the point
of view of machine learning, the exact values in the range are unimportant. We will frequently
use {+,−}, {0, 1} and {−1,+1} as the possible options for the range depending on the context
(and at times make rather unintuitive transformations between these possibilities).

1

2 CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

+
++

+
−

−

−

−

−

−

R

(a)

+
++

+
−

−

−

−

−

−

R

R′

(b)

+
++

+
−

−

−

−

−

−

R

R′T1

T2

T3

T4

(c)

+
++

+
−

−

−

−

−

−

R

R′T1

T2

T3

T4

(d)

Figure 1.1: (a) Data received for the rectangle learning game. The rectangle R
used to generate labels is hidden from the learning algorithm. (b) The tightest
fit algorithm produces a rectangle R′. (c) & (d) The regions T1, T2, T3 and T4
contain ε/4 mass each under D (for two different distributions D).

Let us consider the following simple algorithm. We consider the tightest
possible axis-aligned rectangle that can fit all the positively labelled data inside
it; let us denote this rectangle by R′ (Fig. 1.1(b)). Our prediction function or
hypothesis hR′ : R2 → {+,−} is the following: if x ∈ R′, hR′(x) = +, else
hR′(x) = −.2 Let us consider the following questions:

– Have we learnt the function cR ?
– How good is our prediction function hR′?

Let R denote the true rectangle that actually defines the labelling function
cR. Since we’ve chosen the tightest possible fit, the rectangle R′ must be
entirely contained inside R. Consider the shaded region shown in Fig. 1.1(b).
For any point x that is in this shaded region, it must be that hR′(x) = −, while
cR(x) = +. In other words, our prediction function hR′ would make errors on
all of these points. If we had to make predictions on points that mostly lie in
this region our hypothesis would be quite bad. This raises an important point
that the data that is used to learn a hypothesis should be similar to the data
on which the hypothesis will be tested. We will now formalise this notion.

Let D be a probability distribution over R2; in the ensuing discussion, we
will assume that D can be expressed using a density function that is defined

2For the sake of concreteness, let us say that points on the sides are considered to be
inside the rectangle.

1.1. A RECTANGLE LEARNING GAME 3

While no knowledge of machine learning is required to complete this
course, it would of course be helpful to make connections with the
techniques and terminology in machine learning. This discussion appears
in coloured boxes and can be safely ignored for those uninterested in
applied machine learning.

In machine learning, one makes the distinction between the training
and test datasets; when done correctly the empirical error on the test
dataset would give an unbiased estimate of what we refer to as error in
Eqn. (1.1). In machine learning it is also common to use a validation set;
this is often done because multiple models are trained on the training
set (possibly because of hyperparameters) and one of them needs to be
picked. Picking them using their performance on the training set may
result in overfitting. In this course, we will adopt the convention that
model selection is also part of the learning algorithm and not make a
distinction between the training and validation sets. (For example, see
Exercise 1.3.)

over all of R2 and is continuous.3 The training data consists of m points that
are drawn independently according to D and then labelled according to the
function cR. We will define the error of a hypothesis hR′ with respect to the
target function cR and distribution D as follows:

err(hR′ ; cR, D) = Px∼D
[
hR′(x) 6= cR(x)

]
(1.1)

Whenever the target cR and distribution D are clear from context, we will
simply refer to this as err(hR′).

We will now show that in fact our algorithm outputs an hR′ that is quite
good, in the sense that given any ε > 0 as the target error, with high probability
(at least 1 − δ), given a sufficiently large training sample, it will output hR′
such that err(hR′ ; cR, D) ≤ ε. Consider four rectangular strips T1, T2, T3, T4
that are chosen along the sides of the rectangle R (and lying inside R) such
that the probability that a random point drawn according to D lands in some
Ti is exactly ε/4.4 Note that some of these strips overlap, e.g. T1 and T2 (see
Fig. 1.1(c)). The probability that a point drawn randomly according to D lies
in the set T1∪T2∪T3∪T4 is at most ε (a fact that can be proved formally using
the union bound (cf. Appendix A.1)). If we can guarantee that the training
data of m points contains at least one point from each of T1, T2, T3 and T4,
then the tightest fit rectangle R′ will be such that R \R′ ⊂ T1 ∪ T2 ∪ T3 ∪ T4,
and as a consequence, err(hR′ ; cR, D) ≤ ε. This is shown in Fig. 1.1(c); note
that if even one of the Ti do not contain any point in the data, this may cause
a problem, in the sense that the region of disagreement between R and R′ may
have probability mass greater than ε (see Fig. 1.1(d)).

Let A1 be the event that when m points are drawn independently according
to D, none of them lies in T1. Similarly, define the events A2, A3, A4 for

3This assumption is not required; in the exercises you are asked to show how the
assumption can be removed.

4Assuming that the distribution D can be expressed using a continuous density function
that is defined over all of R2, such strips always exist. Otherwise, the algorithm is still
correct, however, the analysis is slightly more tedious and is left as Exercise 1.1.

4 CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

T2, T3, T4. Consider the event E = A1 ∪ A2 ∪ A3 ∪ A4. If E does not occur,
then we have already argued that err(hR′ ; cR, D) ≤ ε. We will use the union
bound to bound P [E] (cf. Appendix A.1). To begin, let us compute P [A1].
The probability that a single point drawn according to D does not land in T1 is
exactly 1−ε/4; so the probability that afterm independent draws fromD, none
of the points are in T1 is

(
1− ε

4
)m. By a similar argument, P [Ai] =

(
1− ε

4
)m

for i = 1, . . . , 4. Thus, we have

P [E] ≤
4∑
i=1

P [Ai] The Union Bound (A.1).

= 4
(

1− ε

4

)m
≤ 4 exp

(
−mε4

)
. As 1− x ≤ e−x (B.1).

For any δ > 0, picking m ≥ 4
ε log

(4
δ

)
suffices to ensure that P [E] ≤ δ. In

other words, with probability at least 1− δ, err(hR′ ; cR, D) ≤ ε.
A couple of remarks are in order. We should think of ε as being the accuracy

parameter and δ being the confidence parameter. The bound m ≥ 4
ε log

(4
δ

)
suggests that as we demand higher accuracy (smaller value of ε) and higher
confidence (smaller value of δ) of our learning algorithm, we need to supply
more data.5 This is indeed a reasonable requirement. Furthermore, the cost
of achieving higher accuracy and higher confidence is relatively modest. For
example, if we want to halve the error while keeping the confidence parameter
constant, say go from ε = 0.02 to ε = 0.01, the amount of data required (as
suggested by the bound) only doubles.6

There is another corner case that needs to be considered. What if we
observe no positively labelled points? Or only one of them? We will allow
the learning algorithm to use degenerate rectangles, which include the empty
set, points, and line segments that are parallel to one of the axes. So hR′ as
produced by our algorithm is still well-defined. It is easy to check that the rest
of the analysis remains unchanged. In short, if after drawing m ≥ 4

ε log
(4
δ

)
points independently from D, we have still not seen a single positively labelled
point, then outputting a hypothesis hR′ that always predicts negative, does
satisfy with probability at least 1 − δ, that its error it at most ε. As this was
our very first example, we discussed the corner cases in detail. Further on in
the course, you should convince yourselves that the corner cases indeed pose
no problem to our analyses.

1.2 Key Components of the PAC Learning Framework

We will use the insights gleaned from the rectangle learning game to develop key
components of a mathematical framework for automatic learning from data.
First let us make a few observations:

5So far, we have only established sufficient conditions, i.e. upper bounds, on the sample
complexity required for learning. In later chapters we will establish necessary conditions, i.e.
lower bounds on the amount of data required for learning algorithms.

6We are using the word “required” a bit losely here. All we can say is our present analysis
of this particular algorithm suggests that the amount of data required scales linearly as 1

ε
.

We will see lower bounds of this nature that hold for any algorithm in later chapters.

1.2. KEY COMPONENTS OF THE PAC LEARNING FRAMEWORK 5

1. The learning algorithm does not know the target concept to be learnt
(obviously, otherwise there is nothing to learn!). However, the learning
algorithm does know the set of possible target concepts. In the rectangle
learning game, the unknown target is always an axis-aligned rectangle.

2. The learning algorithm has access to data drawn from some distribution
D. We do assume that the observations are drawn independently according
to D. However, no assumption is made on the distribution D itself. This
reflects the fact that the environments in which learning agents operate may
be very complex and it is unrealistic to assume that the observations are
generated according to some distribution that is easy to describe.

3. The output hypothesis is evaluated with respect to the same distribution D
that generated the training data.

4. We would like learning algorithms to be statistically efficient, i.e. they
should require a relatively small training sample to guarantee high accuracy
and confidence, as well as computationally efficient, i.e. they should run
in a reasonable amount of time. In general, we shall take the view that
learning algorithms for which the training sample size and running time
scales polynomially with the size parameters are efficient. However, in some
cases we will be more precise and specify the exact running time and sample
size.

Let us now formalise a few other concepts related to learning.

Instance Space
Let X denote the set of possible instances; an instance is the input part, x, of
a training example (x, y), and y is the target label. In the rectangle learning
game, the instances were points in R2; the instance space was R2. When
considering binary classification problems for images, the instances may be 3
dimensional arrays, containing the RGB values of each pixel. Mostly, we shall
be concerned with the case when X = {0, 1}n or X = Rn; other instance spaces
can be usually mapped to one of these, as is often done in machine learning.

Concept Class
A concept c over an instance space X is a boolean function c : X → {0, 1}. (We
will consider learning target functions that are not boolean later in the course.)
A concept class C over X is a collection of concepts c over X. In the rectangle
learning game, the concept class is the set of all axis-aligned rectangles in R2.
The learning algorithm has knowledge of C, but not of the specific concept
c ∈ C that is used to label the observations. A concept class that contains
concepts that are too simple may not be expressive enough to describe the
real-world process we are trying to learn. On the other hand, considering a
concept class that is too large, e.g. all boolean functions, would not allow us
to design efficient learning algorithms.

Data Generation
Let D be a probability distribution over X. The training data is obtained as
follows. An instance x ∈ X is drawn according to the distribution D. If c is

6 CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

the target concept, the instance x is labelled accordingly as c(x). The learning
algorithm observes the example (x, c(x)). We will refer to this process as an
example oracle, denoted by EX(c,D). We assume that a learning algorithm can
query the oracle EX(c,D) at unit cost and each query yields an independent
training example.

1.2.1 PAC Learning: Take I

Let h : X → {0, 1} be some hypothesis; we typically refer to the boolean
function output by a learning algorithm as a hypothesis to distinguish it from
the target. For a distribution D over X and a fixed target c ∈ C, the error of
h with respect to c and D is defined as:

err(h; c,D) = Px∼D
[
h(x) 6= c(x)

]
. (1.2)

When c and D are clear from context, we will simply refer to this as err(h).

Definition 1.1 – PAC Learning: Take I. Let C be a concept class over X.
We say that C is PAC (take I) learnable if there exists a learning algorithm L
that satisfies the following: for every concept c ∈ C, for every distribution D
over X, for every 0 < ε < 1/2 and 0 < δ < 1/2, if L is given access to EX(c,D)
and inputs ε and δ, L outputs a hypothesis h ∈ C that with probability at least
1 − δ satisfies err(h) ≤ ε. The probability is over the random examples drawn
from EX(c,D) as well as any internal randomisation of L. The number of calls
made to EX(c,D) (sample complexity) must be bounded by a polynomial in 1

ε
and 1

δ .
We further say that C is efficiently PAC (take I) learnable if the running

time of L is polynomial in 1/ε and 1/δ.

The term PAC stands for probably approximately correct. The approximately
correct part captures the notion that the most that can be guaranteed is that
the error of the output hypothesis can be bounded to be below a desired
level; demanding higher accuracy (lower ε) is possible, but comes at a cost
of increased running time and sample complexity. In most cases, achieving
exactly zero error is infeasible as it is possible that two target concepts may be
identical except on one instance which is very unlikely to be drawn according to
the distribution D.7 The probably part captures the notion that there is some
chance that the algorithm may fail completely. This may happen because the
observations are not representative of the underlying data distribution, a low
probability event, though very much a possible event. Our confidence (lower
δ) in the correctness of our algorithm is increased as we allow more sample
complexity and running time.

Based on our analysis of the rectangle learning game in Section 1.1, we have
essentially already proved the following theorem.

Theorem 1.2. The concept class of axis-aligned rectangles in R2 is efficiently
PAC (take I) learnable.

1.2. KEY COMPONENTS OF THE PAC LEARNING FRAMEWORK 7

(a) (b)

Figure 1.2: Different shape concepts in R2.

1.2.2 PAC Learning: Take II

Having proved our first result in PAC learning, let us discuss a couple of
issues that we have glossed over so far. The first question concerns that of
the complexity of the concepts that we are trying to learn. For example,
consider the question of learning rectangles (Fig. 1.2(a)) versus more complex
shapes such as shown in Fig. 1.2(b). Intuitively, we believe that it should be
harder to learn concepts defined by shapes like in Fig. 1.2(b) than rectangles.
Thus, within our mathematical learning framework, an algorithm that learns
a more complex class should be allowed more resources (sample size, running
time, memory, etc.). In order to represent an axis-aligned rectangle, we only
need to store four real numbers, the lower and upper limits in both the x and y
directions. The number of real numbers used to represent more complex shapes
is higher.8

The question of representation is better elucidated by taking the case of
boolean functions defined on the boolean hypercube X = {0, 1}n, the set of
length n bit vectors. Consider a boolean function f : X → {0, 1}; there are
several ways of representing boolean functions. One option is to keep the entire
truth table with 2n entries. Alternatively, we may represent f as a circuit
using ∧ (and), ∨ (or) and ¬ (not) gates. We may ask that f be represented in
disjunctive normal form (DNF), i.e. in the form shown below

(z1 ∧ z3 ∧ z7 ∧ · · ·) ∨ (z2 ∧ z4 ∧ z8 ∧ · · ·) ∨ · · · ∨ (z1 ∧ z3).

The choice of representation can make a huge difference in terms of the amount
of memory required to store a description of the boolean function. You are
asked to show this in the case of the parity function f = z1 ⊕ z2 ⊕ · · · ⊕ zn in
Exercise 1.2. There are other possible representations of boolean functions,
such as decision lists, decision trees, neural networks, etc., which we will
encounter later in the course.

7In later chapters, we will consider different learning frameworks under which exact
learning, i.e. achieving zero error, is possible.

8We shall assume that our computers can store and perform elementary arithmetic
operations (addition, multiplication, division) on real numbers at unit cost.

8 CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

Representation Scheme

Abstractly, a representation scheme for a concept class C is an onto function
R : Σ∗ → C, where Σ is a finite alphabet.9 Any σ ∈ Σ∗ satisfying R(σ) = c is
called a representation of c. We assume that there is a function, size : Σ∗ → N,
that measures the size of a representation. A concept c ∈ C may in general
have multiple representations under R. For example, there are several boolean
circuits that compute exactly the same boolean function. We can define the
function size on the set C by defining, size(c) = min

σ:R(σ)=c
{size(σ)}. When we

refer to a concept class, we will assume by default that it is associated with
a representation scheme and a size function, so that size(c) is well defined
for c ∈ C. In most cases of interest, there will be a natural notion of size
that makes sense for the learning problem at hand; however, some of the
exercises and coloured boxes encourage you to explore the subtleties involved
with representation size in greater detail.

Instance Size

Typically, instances in a learning problem also have a natural notion of size
associated with them; roughly we may think of the size of an instance as the
amount of memory required to store it. For example, 10× 10 black and white
images can be represented using 100 bits, whereas 1024 × 1024 colour images
will require over 3 million real numbers. When faced with larger instances, we
should expect that learning algorithms will require more time; at the very least
they have to read the input data!10 In this course, we will only consider settings
where the instance space is either Xn = {0, 1}n or Xn = Rn. We denote by Cn
a concept class over Xn. We consider the instance space X =

⋃
n≥1Xn and

the concept class C =
⋃
n≥1 Cn as representing increasingly larger instances

(and concepts on them).

Definition 1.3 – PAC Learning: Take II. For n ≥ 1, let Cn be a concept
class over instance space Xn and let C =

⋃
n≥1 Cn and X =

⋃
n≥1Xn. We say

that C is PAC (take II) learnable if there exists a learning algorithm L that
satisfies the following: for every n ∈ N, for every concept c ∈ Cn, for every
distribution D over Xn, for every 0 < ε < 1/2 and 0 < δ < 1/2, if L is given
access to EX(c,D) and inputs n, size(c), ε and δ, L outputs h ∈ Cn that with
probability at least 1−δ satisfies err(h) ≤ ε. The probability is over the random
examples drawn from EX(c,D) as well as any internal randomization of L. The
number of calls made to EX(c,D) (sample complexity) must be bounded by a
polynomial in n, size(c), 1

ε and 1
δ .

We further say that C is efficiently PAC (take II) learnable if the running
time of L is polynomial in n, size(c), 1/ε and 1/δ.

9If representing the concept requires using real numbers, such as in the case of rectangles,
we may use R : (Σ ∪ R)∗ → C. Representing a real number will assumed to be unit cost.

10Assuming we know how the data is stored and that we can access specific parts of the
data, in certain cases learning algorithms that do not even have to read the entire data can
be designed.

1.3. LEARNING CONJUNCTIONS 9

When learning a target concept c ∈ Cn, in general, allowing the learning
algorithm resources that increase with size(c) will be necessary. Mostly,
we will consider concept classes Cn over Xn for which every size(c) can
be bounded for every c ∈ Cn by some fixed polynomial function of n.
Thus, efficient PAC learning simply requires designing algorithms that
run in time polynomial in n, 1

ε and 1
δ .

Definition 1.3 is general enough to allow for the existence of “efficient”
PAC learning algorithms if an overly verbose representation scheme is
chosen. For example, the class of all boolean functions is efficiently
PAC-learnable when the representation scheme uses truth tables. On the
other hand, if we represent boolean functions as decision trees, or boolean
circuits, or even boolean formulae in disjunctive normal form (DNF), it
is widely believed that the class of boolean functions is not efficiently
PAC-learnable. We will provide some evidence for this assertion based on
cryptographic assumptions and on hardness of learning in the statistical
query (SQ) learning model in later chapters.

1.3 Learning Conjunctions

Having formulated a notion of learning, let us consider a second learning
problem. Let Xn = {0, 1}n represent the instance space of size n; note that
each element x ∈ Xn denotes a possible assignment to n boolean variables
z1, . . . , zn; let X =

⋃
n≥1Xn. Let CONJUNCTIONSn denote the concept class

of conjunctions over the n boolean variables z1, . . . , zn. A literal is either a
boolean variable zi or its negation zi. A conjunction (sometimes also called a
term) is simply an and (∧) of literals. An example conjunction ϕ with n = 10
(say) is

ϕ = z1 ∧ z3 ∧ z8 ∧ z9. (1.3)

Formally, a conjunction over z1, . . . , zn can be represented by two subsets
P,N ⊂ [n]. Such a pair of sets P,N represents the conjunction ϕP,N defined
as

ϕP,N =
∧
i∈P

zi ∧
∧
i∈N

zi. (1.4)

In (1.4), the sets P and N represent the positive and negative literals that
appear in the conjunction ϕP,N respectively. We have not required that P∩N =
∅; this allows us to represent a boolean function that is 0 over the entire
hypercube (falsehood), e.g. as z1 ∧ z1. Both P and N could be empty,
representing an empty conjuntion that is 1 over the entire boolean hypercube
(tautology). Formally

CONJUNCTIONSn = {ϕP,N | P,N ⊂ [n]},

CONJUNCTIONS =
⋃
n≥1

CONJUNCTIONSn.

When representing a conjunction over n boolean variables, each of the sets
P and N can be represented by a bit-string of length n; as a result any

10CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

Algorithm 1.1: CONJUNCTIONS Learner
1 Input: n, m, access to EX(c,D)
2 // initialize hypothesis conjunction with all literals
3 Set h = z1 ∧ z1 ∧ z2 ∧ z2 ∧ · · · ∧ zn ∧ zn
4 for i = 1, . . . ,m do
5 draw (xi, yi) from EX(c,D)
6 if yi == 1 then // ignore negative examples
7 for j = 1, . . . n do
8 if xi,j = 0 then // jth bit of ith instance is 0
9 Drop zi from h

10 else // jth bit of ith instance is 1
11 Drop zi from h

12 Output: h

conjunction can be represented using a bit-string of length 2n. As there are
at least 2n conjunctions (can you count the number of conjunctions exactly?)
we should expect to need at least n bits to represent a conjunction. Thus,
this representation scheme is fairly succinct. Thus, our goal is to design an
algorithm that runs in time polynomial in n, 1/ε and 1/δ.

Let c denote the target conjunction. The example oracle EX(c,D) returns
examples of the form (x, y) where y ∈ {0, 1}. y = 1 if c evaluates to 1 (true)
after assigning zi = xi for i = 1, . . . , n. In other words, y = 1 if x is a satisfying
assignment of the conjunction c, and 0 otherwise.

Algorithm 1.1 is learns the concept class CONJUNCTIONS. We describe
the high-level idea before giving the complete proof.

i) The algorithm begins by conservatively constructing a hypothesis h that
is a conjunction of all the 2n possible literals. Clearly, this conjunction
will always output 0 on any given input. The algorithm then makes use
of data to remove harmful literals from h.

ii) The algorithm draws m independent examples (xi, yi) from the oracle
EX(c,D); all the negatively labelled examples (yi = 0) are ignored. For
positively labelled examples literals that would cause these to be labelled
as negative by h are dropped from h. The resulting hypothesis h is
returned. Thus, the algorithm outputs the “longest” conjunction (containing
the most number of literals) that is consistent with the observed data.
This is because only those literals that absolutely cannot be part of
the target conjunction (as dictated by the positively labelled data) are
dropped.

Theorem 1.4. Provided m ≥ 2n
ε log

(2n
δ

)
, Algorithm 1.1 efficiently PAC (take

II) learns the concept class CONJUNCTIONS.

Proof. Let c be the target conjunction and D the distribution over {0, 1}n.
For a literal ` (which may be zi or zi), let p(`) = Px∼D

[
c(x) = 1 ∧ `(x) = 0

]
;

here, we interpret ` itself as a conjunction with 1 literal. Thus, if ` = zi, then
`(x) = xi; if ` = zi, then `(x) = 1−xi. Notice that if p(`) > 0, then the literal
` cannot be present in c; if it were, then there can be no x such that c(x) = 1
and `(x) = 0.

1.3. LEARNING CONJUNCTIONS 11

We define a literal ` to be harmful if p(`) ≥ ε
2n . We will ensure that all

harmful literals are eliminated from the hypothesis h. For a harmful literal `,
let A` denote the event that after m independent draws from EX(c,D), ` is not
eliminated from h. Note that this can only happen if no x such that c(x) = 1
but `(x) = 0 is drawn. This can happen with probability at most

(
1− ε

2n
)m.

Let B denote the set of harmful literals and let E =
⋃
`∈B A` be the event that

at least one harmful literal survives in h. We shall choose m large enough so
that P [E] ≤ δ. Consider the following,

P [E] ≤
∑
`∈B

P [A`] By the Union Bound (A.1).

≤ 2n
(

1− ε

2n

)m
|B| ≤ 2n and for each ` ∈ B,P [A`] ≤

(
1− ε

2n

)m
.

≤ 2n exp
(
−mε2n

)
. As 1− x ≤ e−x (B.1).

Thus, whenever m ≥ 2n
ε log

(2n
δ

)
, we know that P [E] ≤ δ. Now, suppose that

E does not occur, i.e. all harmful literals are eliminated from h. Let Bc be the
set of literals that are not harmful.

err(h) = Px∼D
[
c(x) = 1 ∧ h(x) = 0

]
≤
∑
`∈Bc

Px∼D
[
c(x) = 1 ∧ `(x) = 0

]
≤ 2n · ε2n ≤ ε.

This completes the proof.

It is worth pointing out that Algorithm 1.1 only makes use of positively
labelled examples. The algorithm works correctly even if no positively labelled
examples are obtained from the oracle EX(c,D); this is because if no positive
examples are obtained after drawingm independent examples (for a sufficiently
large m), then returning a hypothesis h that always predicts 0 is sufficient to
achieve low error.

1.3.1 Learning k-CNF
We can generalize Algorithm 1.1 to learn richer classes of boolean functions.
A clause is a disjunction (∨) of boolean literals. The length of a clause is the
number of (not necessarily distinct) literals in it. For example, z1∨z7∨z15 is a
clause of length 3. Let clausesn,k denote the set of all clauses of length exactly k
on the n boolean variables z1, . . . , zn. We define the class of boolean functions
that can be written in conjunctive normal form using clauses of length exactly
k as:

k-CNFn = {
∧
i

ci | ci ∈ clausesn,k},

k-CNF =
⋃
n≥1

k-CNFn.

12CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

A representation of boolean function as in the class k-CNF is called a k-CNF
formula. There are at most (2n)k possible clauses of length k on n boolean
variables and so each k-CNF formula over n variables can have at most (2n)k
clauses. (Allowing clauses to have the same literal multiple times and letting
the order of literals matter, we shall assume in the rest of this section that
there are exactly (2n)k clauses of length k.)

It is completely straightforward to modify Algorithm 1.1 to start with a
hypothesis h that is a k-CNF formula with all (2n)k clauses and eliminate the
clauses that cause positive examples to be labelled negative. This algorithm is
efficient if we assume the representation scheme to have length (2n)k, and in
any case the running time and sample complexity is polynomial in n for any
fixed constant k.

Rather than redo the proof of Theorem 1.4, we shall sketch a different
approach that also introduces the notion of a reduction between learning problems.
Suppose the target function is a k-CNF formula over the boolean variables
z1, . . . , zn; we create new boolean variables (z′`1,...,`k) where each `i is either
some zj or zj . When placed in parentheses, (z′`1,...,`k) denotes the set of all
possible (2n)k boolean variables; whereas by itself z′`1,...,`k denotes the specific
variable corresponding to the tuple of literals (`1, . . . , `k). The boolean variable
z′`1,...,`k is meant to respresent the clause `1 ∨ · · · ∨ `k. Given an assignment
to the boolean variables z1, . . . , zn denoted by some bit-vector x ∈ {0, 1}n, an
assignment to (z′`1,...,`k) can be uniquely determined, by assigning the variable
z′`1,...,`k the value 1 if and only if x is a satisfying assignment of the clause
`1∨· · ·∨`k. This yields a bit vector in {0, 1}(2n)k that represents the assignment
to all (z′`1,...,`k). Let us denote this map from {0, 1}n to {0, 1}(2n)k by f and
observe that it is injective.

Now consider the following “natural” bijective map, denoted by g, between
k-CNF formulae over z1, . . . , zn and monotone conjunctions over (z′`1,...,`k):
given a k-CNF formula ϕ, the literal z′`1,...,`k appears in the monotone conjunction
g(ϕ) if and only if ϕ contains the clause `1 ∨ · · · ∨ `k.11 (A conjunction is
monotone if it does not contain any negated literals; Algorithm 1.1 modified to
start with h = z1 ∧ · · · ∧ zn clearly learns the class of monotone conjunctions.)

Let D be a distribution over {0, 1}n and let f(D) denote the distribution
over {0, 1}(2n)k obtained by first drawing x according to D and then applying
f to x. Let c, h ∈ k-CNFn, then it can be easily verified that

err(h; c,D) = err(g(h); g(c), f(D)).

The only thing that remains is to observe that the maps f , g and g−1 are
(trivially) polynomial time computable and that given access to EX(c,D), the
hypothetical example oracle EX(g(c), f(D)) can be simulated in polynomial
time. Thus, we have proved the following result.

Theorem 1.5. The concept class k-CNF is efficiently PAC (take II) learnable.

11We treat this map as purely syntactic. In particular, for truth assignments the order of
the variables does not matter; however, for the purpose of the map g, the 2-CNF formulae
(x1∨x2)∧(x3∨x4) and (x2∨x1)∧(x4∨x3) would be mapped to the (distinct) conjunctions,
z′z1,z2 ∧ z

′
z3,z4 and z′z2,z1 ∧ z

′
z4,z3 respectively.

1.4. HARDNESS OF LEARNING 3-TERM DNF 13

1.4 Hardness of Learning 3-term DNF

Having seen a few examples of concept classes that are PAC (take II) learnable,
we shall temper our optimism by proving that a class of boolean functions
(not significanly more complex than CONJUNCTIONS) is not PAC (take II)
learnable, assuming an unproven, but widely believed, conjecture from computational
complexity theory. The class is that of boolean functions that can be expressed
as DNF formulae with exactly 3 terms. A term is simply a conjunction over n
boolean variables z1, . . . , zn. Formally, the class is defined as

3-TERM-DNFn = {T1 ∨ T2 ∨ T3 | Ti ∈ CONJUNCTIONSn},

3-TERM-DNF =
⋃
n≥1

3-TERM-DNFn.

Note that any DNF formula with 3 terms can be expressed as a bit-string of
length at most 6n—there are three terms, each of which is a boolean conjunction
expressible by a boolean string of length 2n; as a result, the representation size
for each c ∈ 3-TERM-DNFn can be bounded by 6n. Thus, an efficient algorithm
for learning 3-TERM-DNF needs to run in time polynomial in n, 1/ε and 1/δ.
The next result shows that such an algorithm is, in fact, unlikely to exist.
Formally, we’ll prove the following theorem.

Theorem 1.6. 3-TERM-DNF is not efficiently PAC (take II) learnable unless
RP = NP.

Let us first discuss the condition “unless RP = NP”. We will briefly define
the class RP here, but those unfamiliar with (randomized) complexity classes
may wish to refer to standard texts on complexity theory (cf. Chapter Notes
in Section 1.8). The class RP consists of languages for which membership can
be determined by a randomised polynomial time algorithm that errs on only
one side. More formally, a language L ∈ RP, if there exists a randomised
polynomial time algorithm A that satisfies the following

– For string σ 6∈ L, A(σ) = 0
– For string σ ∈ L, A(σ) = 1 with probability at least 1/2.

The rest of this section is devoted to prove Theorem 1.6. We shall reduce the
decision problem for an NP-complete language to the problem of PAC (take II)
learning 3-TERM-DNF. Suppose L is a language that is NP-complete. Given
an instance (string) σ we wish to decide whether σ ∈ L. We will construct
a training sample, a set of positive instances S+ and negative instances S−,
where S+ and S− are disjoint. We will show that there exists a 3-term DNF
formula ϕ such that all instances in S+ are satisfying assignments of ϕ and
that none of the instances in S− satisfy ϕ, if and only if σ ∈ L. We will ensure
that |S+∪S−| is bounded by some polynomial in |σ|, and that each example is
also of size bounded by a polynomial in |σ|, so that the reduction is polynomial
time. Here |σ| simply denotes the length of the instance (string) σ.

Let us see how an efficient algorithm that PAC (take II) learns 3-TERM-DNF
can be used to test whether or not σ ∈ L. Let S = S+ ∪ S−, where S+ and
S− are the sets as constructed above, and let D be a distribution that is
uniform over S, i.e. a distribution that assigns probability mass 1

|S| to every

14CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

instance that appears in S, and 0 mass to all other instances. Let ε = 1
2|S| and

δ = 1/2. Now, let us suppose that σ ∈ L, then indeed there does exist 3-term
DNF formula, ϕ, that is consistent with the sample S. So we can simulate a
valid example oracle EX(ϕ,D), by simply returning a random example (x, y)
where x is chosen uniformly at random from S, and y = 1 if x ∈ S+, and
y = 0 otherwise. By the PAC (take II) learning guarantee, with probability
at least 1/2, the algorithm returns h ∈ 3-TERM-DNF, such that err(h) ≤ 1

2|S| .
However, as there are only |S| instances in S and the distribution is uniform, it
must be that h correctly predicts the labels of all instances in S, which implies
σ ∈ L. Notice that given h, it can easily be checked in polynomial time that h
indeed correctly predicts the labels for all instances in S.

On the other hand, if σ 6∈ L, there is no 3-term DNF formula that correctly
assigns labels to the instances in S. Hence, the learning algorithm cannot
output such an h ∈ 3-TERM-DNF. Again, given the output hypothesis h,
checking whether h correctly labels all the instances in S or not, can be easily
done in polynomial time. Thus, assuming an efficient PAC (take II) learning
algorithm for 3-TERM-DNF exists, we also have a randomised algorithm to solve
the decision problem for the NP-complete language L. This in turn implies that
RP = NP, something that is widely believed to be untrue.

All that is left to do is to identify a suitable NP-complete language and
show how to construct a sample S with the desired property. In this case, we
will use the fact that graph 3-colouring is NP-complete.

Graph 3-Colouring reduces to PAC (Take II) Learning 3-TERM-DNF

The language 3-COLOURABLE consists of representations of graphs that can
be 3-coloured. We say a graph is 3-colourable if there is an assignment from the
vertices to the set of three colours, {r, g, b}, such that no two adjacent vertices
are assigned the same colour. As already discussed, given a graph G, we only
need to produce disjoint sets S+ and S− of instances that are positively and
negatively labelled respectively, such that the graph G is 3-colourable if and
only if there exists a 3-term DNF formula that correctly predicts the labels of
all instances in S+ ∪ S−.

For notational convenience, in this section, we will denote the instances as
v(i) and e(i, j) rather than the more usual x. Suppose G has n vertices. For
vertex i ∈ G, we let v(i) ∈ {0, 1}n that has a 1 in every position except i. For
an edge (i, j) in G, we let e({i, j}) ∈ {0, 1}n that has a 1 in all positions except i
and j. Let S+ = {v(i) | i a vertex of G} and S− = {e({i, j}) | {i, j} an edge of G};
clearly S+ and S− are disjoint. Figure 1.3 shows an example of a graph that
is 3-colourable along with the sets S+ and S−.

First, suppose that G is 3-colourable. Let Vr, Vg, Vb be the set of vertices of
G that are labelled red (r), blue (b) and green (g) respectively in some valid 3-
colouring. Let z1, . . . , zn denote the n boolean variables (one corresponding to
each vertex of G). Let Tr =

∧
i6∈Vr zi. Tg and Tb are defined similarly. Consider

the 3-term DNF formula ϕ = Tr ∨ Tg ∨ Tb; we will show that all instances in
S+ satisfy ϕ and that none of the instances in S− do. First consider v(i) ∈ S+.
Without loss of generality, suppose i is coloured red, i.e. i ∈ Vr. Then, we
claim that v(i) is a satisfying assignment of Tr and hence also of ϕ. Clearly,
the literal zi is not contained in Tr and there are no negative literals in Tr.
Since all the bits of v(i) other than the ith position are 1, v(i) is a satisfying

1.5. LEARNING 3-CNF VS 3-TERM-DNF 15

1

2 3
4

5
6

(a) Graph

v(1) (0, 1, 1, 1, 1, 1)
v(2) (1, 0, 1, 1, 1, 1)
v(3) (1, 1, 0, 1, 1, 1)
v(4) (1, 1, 1, 0, 1, 1)
v(5) (1, 1, 1, 1, 0, 1)
v(6) (1, 1, 1, 1, 1, 0)

(b) Positive Examples

e({1, 2}) (0, 0, 1, 1, 1, 1)
e({1, 6}) (0, 1, 1, 1, 1, 0)
e({2, 3}) (1, 0, 0, 1, 1, 1)
e({2, 4}) (1, 0, 1, 0, 1, 1)
e({3, 6}) (1, 1, 0, 1, 1, 0)
e({4, 5}) (1, 1, 1, 0, 0, 1)
e({4, 6}) (1, 1, 1, 0, 1, 0)
e({5, 6}) (1, 1, 1, 1, 0, 0)

(c) Negative Examples

Figure 1.3: (a) A graph G along with a valid three colouring. (b) Positive
examples of the sample generated using G. (c) Negative examples of the sample
generated using G.

assignment of Tr. Now, consider e({i, j}). We claim that e({i, j}) is not a
satisfying assignment of any of Tr, Tg or Tb and hence it also does not satisfy
ϕ. For a colour c ∈ {r, g, b}, either i is not coloured c or j isn’t. Suppose i is
the one that is not coloured c, then Tc contains the literal zi, but the ith bit of
e({i, j}) is 0 and so e({i, j}) is not a satisfying assignment of Tc. This argument
applies to all colours and hence e({i, j}) is not a satisfying assignment of ϕ.
This completes the “if” part of the proof.

Next, suppose that ϕ = Tr ∨Tg ∨Tb is a 3-term DNF such that all instances
in S+ are satisfying assignments of ϕ and none in S− are. We use ϕ to assign
colours to the vertices of G that represent a valid 3-colouring. For a vertex i,
since v(i) is a satisfying assignment of ϕ, it is also a satisfying assignment of at
least one of Tr, Tg or Tb. We assign it a colour based on the term for which it is
a satisfying assignment (ties may be broken arbitrarily). Since for every vertex
i, there exists v(i) ∈ S+, this ensures that every vertex is assigned a colour.
Next, we need to ensure that no two adjacent vertices are assigned the same
colour. Suppose there is an edge {i, j} such that i and j are assigned the same
colour. Without loss of generality, suppose that this colour is red (r). Since
we know that e({i, j}) is not a satisfying assignment of ϕ, e({i, j}) also does
not satisfy Tr. Also, as i and j were both coloured red, v(i) and v(j) do satisfy
Tr. This implies that the literals zi and zj are not present in Tr. The fact
that v(i) satisfies Tr ensures that the literal zk for any k 6= i cannot appear in
Tr. However, if Tr does not contain any negated literal, other than possibly zi,
and if it does not contain the literals zi and zj , then e({i, j}) satisfies Tr and
hence ϕ, a contradiction. Hence, there cannot be two adjacent vertices that
have been assigned the same colour. This completes the proof of the “only if”
part and with it also the proof of Theorem 1.6.

1.5 Learning 3-CNF vs 3-TERM-DNF

In Section 1.3.1, we proved that the concept class k-CNF, and hence 3-CNF, is
efficiently PAC (take II) learnable. On the other hand, Theorem 1.6 shows that
under the widely believed assumption that RP 6= NP, the class 3-TERM-DNF
is not efficiently PAC (take II) learnable. Let us recall the distributive law of

16CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

boolean operations

(a ∧ b) ∨ (c ∧ d) ≡ (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d). (1.5)

By applying the rule (1.5), we can express any ϕ ∈ 3-TERM-DNF as some
ψ ∈ 3-CNF.

ϕ = T1 ∨ T2 ∨ T3 ≡
∧
`1∈T1
`2∈T2
`3∈T3

(`1 ∨ `2 ∨ `3) = ψ

For any distribution D over Xn = {0, 1}n, the example oracles EX(ϕ,D) and
EX(ψ,D) are indistinguishable. Thus, if we use a PAC (take II) learning
algorithm for 3-CNF that outputs some h ∈ 3-CNF, with probability at least
1− δ, we will have

err(h;ϕ,D) = err(h;ψ,D) ≤ ε.

What this suggests is that if our goal is simply to predict as well as the
target concept ϕ ∈ 3-TERM-DNF, then there is no impediment (in terms
of statistical or computational resources) to doing so. The difficulty arises
because our definition of PAC (take II) learning requires us to express the
output hypothesis as a 3-term DNF formula. Arguably from the point of view of
learning, being able to predict labels correctly is more important than the exact
hypothesis we use to do so. Our final definition of PAC learning in Section 1.6
will allow learning algorithms to output hypothesis that do not belong to the
concept class being learnt. We will still need to put some restrictions on what
is allowable as an output hypothesis; you are asked to explore the implications
of loosening these requirements further in Exercise 2.4. It may also be the case
that the computational savings (being able to run in polynomial time) come at
a statistical cost, something we will explore in greater detail after having seen
some general methods for designing learning algorithms.12

1.6 PAC Learning

In our final definition of PAC learning, we shall remove the requirement that
the output hypothesis actually belongs to the concept class being learnt. We
then have to specify in what form an algorithm may output a hypothesis.
As was the case with concept classes, we can define a hypothesis class Hn

over the instances Xn (implicitly we assume that there is also a representation
scheme for Hn and an associated size function), and consider the hypothesis
class H =

⋃
n≥1Hn. We will wish to place some restrictions on the hypothesis

class. (To explore why see Exercise 2.4.) The requirement we add is that the
hypothesis class H be polynomially evaluatable.

Definition 1.7 – Polynomially Evaluatable Hypothesis Class. A hypothesis
class H is polynomially evaluatable if there exists an algorithm that on input
any instance x ∈ Xn and any representation h ∈ Hn, outputs the value h(x)
in time polynomial in n and size(h).

12The word “may” has been used in the above sentence because the claim is based only on
different upper bounds on the sample complexity of efficient learning algorithms. No “non-
trivial” lower bound on the sample complexity for a polynomial time algorithm for learning
3-TERM-DNF is known. This will be discussed in greater detail in Chapter 2.

1.7. EXERCISES 17

In words, the requirement that H be polynomially evaluatable demands
that given the description of the “program” encoding the prediction rule, h,
and an instance, x, we should be evaluate h(x) in a reasonable amount of time.
Here reasonable means polynomial in the input, i.e. size(h) and x. We now give
the final defintion of PAC learning and then end by making a few observations.

Definition 1.8 – PAC Learning. For n ≥ 1, let Cn be a concept class over
instance space Xn and let C =

⋃
n≥1 Cn and X =

⋃
n≥1Xn. We say that C is

PAC learnable using the hypothesis class H if there exists an algorithm L that
satisfies the following: for every n ∈ N, for every concept c ∈ Cn, for every
distribution D over Xn, for every 0 < ε < 1/2 and 0 < δ < 1/2, if L is given
access to EX(c,D) and inputs n, size(c), ε and δ, L outputs h ∈ Hn that with
probability at least 1−δ satisfies err(h) ≤ ε. The probability is over the random
examples drawn from EX(c,D) as well as any internal randomization of L. The
number of calls made to EX(c,D) (sample complexity) must be bounded by a
polynomial in n, size(c), 1

ε and 1
δ and H must be polynomially evaluatable.

We further say that C is efficiently PAC learnable using H, if the running
time of L is polynomial in n, size(c), 1/ε and 1/δ.

Some comments regarding the definition of PAC Learning

i) For efficient PAC learning, although no explicit restriction is put on what
size(h) can be, the requirement on the running time of the algorithm
ensures that size(h) itself must be bounded by a polynomial in n, size(c),
1
δ and 1

ε .
ii) When H is not explicitly specified, by efficient PAC learning C, we mean

that there exists some polynomially evaluatable hypothesis class H, such
that C is efficiently PAC learnable using H.

iii) In terms for our final definition of PAC learning, PAC (take II) learning C
refers to PAC learning C using C. When efficiency is a consideration, the
learning algorithm has to be efficient and C itself needs to be polynomially
evaluatable. In the literature (and in the rest of this course), (efficient)
PAC (take II) learning is referred to as (efficient) proper PAC learning.
Sometimes to distinguish PAC learning from proper PAC learning, the
word improper is added in front of PAC learning.

iv) In the definition of PAC learning (all of them), we do require that the
number of calls to EX(c,D) is bounded by a polynomial in n, size(c),
1
ε and 1

δ . This corresponds to the sample complexity or the amount of
data used by the learning algorithm. Even when we allow inefficient
algorithms, we do require the amount of data used to be modest; this
is mainly to capture the idea that automated learning is about learning
the target function using a modest amount of data. When arbitrary
computational power is permitted, there is not much to be gained from
using more data; this follows from Exercise 2.4.

1.7 Exercises

1.1 This question is about the rectangle learning problem.

18CHAPTER 1. PROBABLY APPROXIMATELY CORRECT LEARNING

a) Modify the analysis of the rectangle learning algorithm to work in
the case that D is an arbitrary probability distribution over R2.

b) The concept class of hyper-rectangles over Rn is defined as follows

RECTANGLESn = {1[a1,b1]×···×[an,bn] | ai, bi ∈ R, ai < bi}.

For a set S ⊂ Rn, the notation 1S represents its indicator, i.e. the
boolean function that is 1 if x ∈ S and 0 otherwise. Generalise the
algorithm for learning rectangles in R2 and show that it efficiently
PAC learns the class of hyper-rectangles. Give bounds on the number
of examples required to guarantee that with probability at least 1−δ,
the error of the output hypothesis at most ε. The sample complexity
and running time of your algorithm should be polynomial in n, 1

ε
and 1

δ .

1.2 Let f : {0, 1}n → {0, 1} be the parity function on the n bits, i.e.
f(z1, . . . , zn) = z1 ⊕ z2 ⊕ · · · ⊕ zn. In words, when given n bits as input,
f evaluates to 1 if and only if an odd number of the input bits are 1.

a) A boolean circuit with n inputs is represented by an annotated
directed acyclic graph with exactly n source nodes and 1 sink node.
The source nodes contain the inputs z1, . . . , zn (at the time of evaluation
each zi is assigned a value in {0, 1}). Each internal node is labelled
with either ∧, ∨, or ¬; internal nodes labelled by ∧ or ∨ have in-
degree exactly 2 and internal nodes labelled by ¬ have in-degree
exactly 1. The nodes labelled by ∧, ∨ and ¬, compute the logical
and, or, and not, of their inputs (the values at the one or two nodes
that feed into them) respectively. The sink node represents the
output of the circuit which will be either 0 or 1. The size of a
boolean circuit is defined to be the number of edges in the directed
acyclic graph that represents the circuit; the depth of a circuit is
the length of the longest path from a source node to the sink node.
Show that f can be represented as a boolean circuit of size O(n)
and depth O(logn).

b) Show that representing f in disjunctive normal form (DNF) requires
at least 2n−1 terms.

1.3 Say that an algorithm L perhaps learns a concept class C using hypothesis
class H, if for every n, for every concept c ∈ Cn, for every distribution D
over Xn and for every 0 < ε < 1/2, L given access to EX(c,D) and inputs
ε and size(c), runs in time polynomial in n, size(c) and 1/ε, and outputs
a polynomially evaluatable hypothesis h ∈ Hn, that with probability at
least 3/4 satisfies err(h) ≤ ε. In other words, we’ve set δ = 1/4 in the
definition of efficient PAC learning. Show that if C is “perhaps learnable”
using H, then C is also efficiently PAC learnable using H.

1.4 Consider the question of learning boolean threshold functions. Let Xn =
{0, 1}n and for w ∈ {0, 1}n and k ∈ N, fw,k : Xn → {0, 1} is a boolean

1.8. CHAPTER NOTES 19

threshold function defined as follows:

fw,k(x) =

1 if

n∑
i=1

wi · xi ≥ k

0 otherwise

Define the concept class of threshold functions as

THRESHOLDSn = {fw,k | w ∈ {0, 1}n, 0 ≤ k ≤ n},

THRESHOLDS =
⋃
n≥1

THRESHOLDSn.

Prove that unless RP = NP, there is no efficient proper PAC learning
algorithm for THRESHOLDS.

1.8 Chapter Notes

Material in this lecture is almost entirely adopted from Kearns and Vazirani
[32, Chap. 1]. The original PAC learning framework was introduced in a
seminal paper by Valiant [39].

While we will not make heavy use of deep results from Computational
Complexity theory, acquaintance with basic concepts such as NP-completeness,
will be necessary. Better understanding of computational complexity will
also be beneficial to understand hardness of learning based on the RP 6=
NP conjecture and other conjectures from cryptography. The classic text by
Papadimitriou [36], and the more recent book by Arora and Barak [6], are
excellent resources for students wishing to read up further on computational
complexity theory.

Chapter 2

Consistent Learning and
Occam’s Razor

In the previous chapter, we studied a few different learning algorithms. Both
the design and the analysis of those algorithms was somewhat ad hoc, based on
first principles. In this chapter, we’ll begin to develop tools that will serve as
general methods to design learning algorithms and analyse their performance.

2.1 Occam’s Razor

In the first part of this chapter, we’ll study an explanatory framework for
learning. In the PAC learning framework, what is important is a guarantee
that, with high probability, the output hypothesis performs well on unseen
data, i.e. data drawn from the target distribution D. Here we consider the
following question: Given (x1, y1), (x2, y2), . . . , (xm, ym), where xi ∈ Xn and
yi ∈ {0, 1}, can we find some hypothesis, h : Xn → {0, 1} that is consistent
with the observed data, i.e. for all i, h(xi) = yi.1

If there is no restriction on the output hypothesis, then this can be simply
achieved by memorizing the data. In particular, one could output a program
of the form, “if x = x1, output y1, else if x = x2, output y2, . . . , else if
x = xm, output ym, else output 0”. This output hypothesis is correct on all
of the observed data and predicts 0 on all other instances. Clearly, we would
not consider this as a form of learning. The basic problem here is that the
“explanation” of the data is as long as the data itself. Even if one tries to rule
out programmes of this kind, it is easy to see that simple concept classes are
rich enough to essentially memorise the data (cf. Exercise 2.1).

The condition that we want to impose is that the explanation of the data
be succinct, at the very least, shorter than the length of the data itself. In
computational learning theory, this is referred to as the Occam Principle or
Occam’s Razor, named after the medieval philosopher and theologian, William
of Ockham, who expounded the principle that “explanations should be not
made unnecessarily complex”.2

1In order to avoid absurdities, we will assume that for all 1 ≤ i, j ≤ m, it is not the case
that xi = xj , but yi 6= yj .

2This is by no means a wholly accurate depiction of the writings of William of Ockham.
Those interested in the history are encouraged to look up the original work.

21

22 CHAPTER 2. CONSISTENT LEARNING AND OCCAM’S RAZOR

Philosophical Implications*
The notion of succinct explanations can be formalised in several ways and has
deep connections to various areas of mathematics and philosophy. There are
connections to Kolmogorov complexity which leads to theminimum description
length (MDL) principle. The MDL principle itself can be given a Bayesian
interpretation of assigning a larger prior probability to shorter hypotheses. The
existence of a short description also implies existence of compression schemes.
We will not discuss these issues in detail in this course; the interested student
is referred to the following sources as a starting point [21, 28, 26].

Typically, finding the shortest hypothesis consistent with the data may
be intractable or even uncomputable. In order to get useful results out of
this principle, we do not need to find the shortest description or achieve
optimal compression. It turns out that it is enough for the description of
the output hypothesis to be slightly shorter than the amount of data observed.
We’ll formalise this notion to derive PAC-learning algorithms from explanatory
hypotheses.

2.2 Consistent Learning

We’ll first define the notion of a consistent learning algorithm, or consistent
learner, for a concept class C.3

Definition 2.1 – Consistent Learner. We say that a learning algorithm
L is a consistent learner for a concept class C using hypothesis class H, if
for all n ≥ 1, for all c ∈ Cn and for all m ≥ 1, given as input the sequence
of examples, (x1, c(x1)), (x2, c(x2)), . . . , (xm, c(xm)), where each xi ∈ Xn, L
outputs h ∈ Hn such that for i = 1, . . . ,m, h(xi) = c(xi). We say that L
is an efficient consistent learner if the running time of L is polynomial in n,
size(c) and m. Furthermore, we shall say that a concept class C is (efficiently)
consistently learnable, if there exists a learning algorithm L and a polynomially-
evaluatable hypothesis class H, such that L is an (efficient) consistent learner
for C using H.

A consistent learning algorithm is simply required to output a (polynomially
evaluatable) hypothesis that is consistent with all the training data provided
to it. So far, we have not imposed any requirement on the hypothesis class H.
This notion of consistency is closely related to the empirical risk minimisation
(ERM) principle in the statistical machine learning literature, when the risk is
defined using the zero-one loss.

The main result we will prove is that if H is “small enough”, something that
is made precise in the theorem below, then a consistent learner can be used to
derive a PAC-learning algorithm. This theorem shows that short explanatory
hypotheses do in fact also possess predictive power.

Theorem 2.2 – Occam’s Razor, Cardinality Version. Let C be a concept
class and H a hypothesis class. Let L be a consistent learner for C using H.

3Starting from this chapter, we will avoid the cumbersome notation of treating a concept
class C as C = ∪n≥1Cn (likewise X = ∪n≥1Xn and H = ∪n≥1Hn) and shall assume that
this is implicitly the case. Where confusion may arise we shall continue to be fully explicit
about concept classes that contain concepts defined over instance spaces of increasing sizes.

2.2. CONSISTENT LEARNING 23

In statistical machine learning, the general setting is where the inputs
to the target function come from some space X (which in this course we
refer to as the instance space) and the outputs come from some set Y .
The case where Y = {0, 1} corresponds to binary classification problems,
such as the ones we are considering in this course, but in general Y can
be other sets. The data is assumed to come from some distribution over
X × Y .

A class of hypotheses H consists of functions h : X → Y ′, where
typically Y ⊆ Y ′. There is a loss function, ` : Y ′ × Y → R+ that
indicates the loss incurred by outputting y′ ∈ Y ′, when the true output
was y ∈ Y . The risk of a hypothesis with respect to a loss function `
and a data distribution D over X × Y is defined as

R(h) = E
(x,y)∼D

[
`(h(x), y)

]
. (2.1)

The empirical risk on a sample S of size m drawn from D is

R̂(h) = 1
m

∑
(x,y)∈S

`(h(x), y). (2.2)

To be more precise, we should use the notation RD(h) and R̂S(h),
however, unless there is possibility of confusion, we shall drop these
subscripts. The Empirical Risk Minimization (ERM) principle suggests
that a learning algorithm should pick a hypothesis h ∈ H that minimizes
the empirical risk. So far in this course, we have restricted attention to
binary classification with Y = Y ′ = {0, 1} and the so-called zero-one
loss, `(y′, y) = 1(y′ 6= y). In the language of statistical learning, the
realisable setting is the one where there exists h ∈ H which has 0 risk;
in this case ERM is equivalent to consistent learning, and Theorem 2.2
can be applied. We will make further connections to the ERM principle
to topics covered in this course in later chapters.

Then for all n ≥ 1, for all c ∈ Cn, for all D over Xn, for all 0 < ε < 1/2 and
all 0 < δ < 1/2, if L is given a sample of size m drawn from EX(c,D), such
that,

m ≥ 1
ε

(
log |Hn|+ log 1

δ

)
, (2.3)

then L is guaranteed to output a hypothesis h ∈ Hn that with probability at
least 1− δ, satisfies err(h) ≤ ε.

If furthermore, L is an efficient consistent learner, log |Hn| is polynomial
in n and size(c), and H is polynomially evaluatable, then C is efficiently PAC-
learnable using H.

Proof. Fix a target concept c ∈ Cn and the target distribution D over Xn.
Call a hypothesis, h ∈ Hn “bad” if err(h) ≥ ε. Let Ah be the event that

24 CHAPTER 2. CONSISTENT LEARNING AND OCCAM’S RAZOR

m independent examples drawn from EX(c,D) are all consistent with h, i.e.
h(xi) = c(xi), for i = 1, . . . ,m. Then, if h is bad, P [Ah] ≤ (1− ε)m ≤ e−εm.

Consider the event,
E =

⋃
h∈Hn:h bad

Ah

Then, by a simple application of the union bound (A.1), we have,

P [E] ≤
∑

h∈Hn:h bad
P(Ah) ≤ |Hn| · e−εm

Thus, whenever m is larger than the bound given in the statement of the
theorem, except with probability δ, no “bad” hypothesis is consistent with m
random examples drawn from EX(c,D). However, any hypothesis that is not
“bad”, satisfies err(h) ≤ ε as required.

Remark 2.3. The version of the theorem described above only allows Hn

to depend on Cn and n. It is possible to have a much more general version,
where instead we consider the hypothesis class Hn,m where a consistent learner
when given m examples outputs some h ∈ Hn,m. As long as log |Hn,m| can
be bounded by poly(n, size(c), 1

ε ,
1
δ) ·mβ and for some β < 1, a PAC-learning

algorithm can still be derived from a consistent learner. Exercise 2.2 asks to
you prove this more general result. The proof for this version appears in the
book by Kearns and Vazirani [32, Chap. 2].

2.3 Improved Sample Complexity

Learning CONJUNCTIONS
Let us revisit some of the learning algorithms we’ve seen so far. We derived
an algorithm for learning conjunctions. At the heart of the algorithm was,
in fact, a consistent learner, obtained only using positive examples. Thus,
for the conjunction learning algorithm Cn = Hn. Note that the number of
conjunctions on n literals is 3n (each variable may appear as a positive literal,
negative literal, or not at all).

Our analysis of the conjunction learning algorithm showed that if the number
of examples drawn from EX(c,D) was at least 2n

ε

(
log(2n) + log 1

δ

)
, the output

hypothesis with high probability has error at most ε. Theorem 2.2 shows that
in fact even a sample of size 1

ε

(
n log 3 + log 1

δ

)
would suffice.

Learning 3-TERM-DNF
Let us now consider the question of learning 3-TERM-DNF. We have shown
that finding a 3-term DNF formula ϕ that is consistent with a given sample
is NP-complete. On the other hand, we saw that it is indeed possible to find
a 3-CNF formula that is consistent with a given sample. Let us compare the
sample complexity bounds given by Theorem 2.2 in both of these cases. In
order to do that we need good bounds on |3-TERM-DNFn| and |3-CNFn|. Any
3-TERM-DNF formula can be encoded using at most 6n bits, each term (or
a conjunction) can be represented by a a bit string of length 2n to indicate

2.4. EXERCISES 25

whether a variable appears as a positive literal, negative literal, or not at all.
Thus, |3-TERM-DNFn| ≤ 26n.

Similarly, there are (2n)3 possible clauses with three literals. Thus, each
3-CNF formula can be represented by a bit string of length (2n)3, indicating
for each of the possible clauses whether they are present in the formula or not.
Thus, |3-CNFn| ≤ 28n3 . It is also not hard to show that |3-CNFn| ≥ 2κn3

for some universal constant κ > 0. Thus, it is the case that log |3-CNFn| =
Ω(n3). Thus, in order to use a consistent learner that outputs a 3-CNF
formula, we need a sample that has size Ω

(
n3

ε

)
;4 on the other hand if we had

unbounded computational resources and could solve the NP-complete problem
of finding a 3-term DNF consistent with a sample, then a sample of size O

(
n
ε

)
is sufficient to guarantee a hypothesis with error at most ε (assuming δ is
constant). This suggests that there may be tradeoff between running time and
sample complexity. However, it does not rule out that there may be another
computationally efficient algorithm for learning 3-TERM-DNF that has a better
bound in terms of sample complexity. This question is currently open.

2.4 Exercises

2.1 Given (x1, y1), (x2, y2), . . . , (xm, ym), such that xi ∈ Xn and yi ∈ {0, 1},
and for all 1 ≤ i, j ≤ m, it is not the case that xi = xj , but yi 6= yj , show
that there is a DNF formula of length O(m) that is consistent with the
observed data.

2.2 Formulate Remark 2.3 as a precise mathematical statement and prove
it. Observe that when Hn,m instead of Hn is used in Equation (2.3),
m appears on both sides of the equation. You should justify that there
exists m that is still polynomial in n, size(c), 1

δ and 1
ε that satisfies the

modified form of Equation (2.3).

2.3 Let Xn = {0, 1}n be the instance space. A parity function, χS , over Xn

is defined by some subset S ⊆ {1, . . . , n}, and takes the value 1 if and odd
number of the input literals in the set {zi | i ∈ S} are 1 and 0 otherwise.
For example, if S = {1, 3, 4}, then the function χS(z1, . . . , zn) = z1 ⊕
z3 ⊕ z4 computes the parity on the subset {z1, z3, z4}. Note that any
such parity function can be represented by a bit string of length n, by
indicating which indices are part of S. Let PARITIESn denote the concept
class consisting of all 2n parity functions; observe that the the concept
class PARITIESn has representation size at most n. Show that the class
PARITIES, defined as PARITIES =

⋃
n≥1 PARITIESn, is efficiently proper

PAC learnable. You should clearly describe a learning algorithm, analyse
its running time and prove its correctness.

2.4 Recall that in the definition of PAC-learning, we require that the hypothesis
output by the learning algorithm be evaluatable in polynomial time.
Suppose we relax this restriction, and let H be the class of all Turing
machines (not necessarily polynomial time)—so the output of the learning

4At the very least, this is the lower bound we get if we apply Theorem 2.2. We will
see shortly that in fact this is a lower bound on sample complexity for learning 3-CNF, no
matter what algorithm is used.

26 CHAPTER 2. CONSISTENT LEARNING AND OCCAM’S RAZOR

algorithm can be any program. Let Cn be the class of all boolean circuits
of size at most p(n) for some fixed polynomial p and having n boolean
inputs. Show that C =

⋃
n≥1 Cn is PAC-learnable using H (under this

modified definition). Argue that this solution shows that the relaxed
definition trivialises the model of learning.

2.5 A k-decision list over n boolean variables z1, . . . , zn, is defined by an
ordered list

L = (t1, b1), (t2, b2), . . . , (tl, bl),

and a bit b, where each ti is a term (conjunction) of at most k literals
(positive or negative) and each bi ∈ {0, 1}. For x ∈ {0, 1}n the value
L(x) is defined to be bj , where j is the smallest index satisfying tj(x) = 1
and L(x) = b if no such index exists. Pictorially, a decision list can be
depicted as shown below. As we move from left to right, the first time a
term is satisfied, the corresponding bj is output, if none of the terms is
satisfied the default bit b is output.

z1 ∧ z3

b1

z4

b2

z2 ∧ z3

b3

z1 ∧ z5

b4

z4 ∧ z6

b5

z1 ∧ z6

b6

b

Give an efficient consistent learner for the class of decision lists. As a
first step, argue that it is enough to just consider the case where all the
terms have length 1, i.e. in fact they are just literals.

Chapter 3

The Vapnik Chervonenkis
Dimension

We have studied how a consistent learner can be used to design a PAC-learning
algorithm, provided the output hypothesis comes from a class that is not too
large, in particular as long as the logarithm of the size of the hypothesis class
can be bounded by a polynomial in the required factors. However, when the
concept class or hypothesis class is infinite, this result cannot be applied at
all. Concept classes that are uncountably infinite are often used in machine
learning, linear threshold functions, also referred to as linear halfspaces, being
the most common one. We have already studied the class of axis-aligned
rectangles, and proved the correctness of a PAC-learning algorithm for this
class using first principles. In this chapter, we’ll study a specific capacity
measure called the Vapnik Chervonenkis (VC) dimenion of a concept class,
and show that provided this can be bounded, a consistent learner can be used
to design PAC-learning algorithms. In particular, the VC dimension can be
finite even for concept classes that are uncountably infinite.

3.1 The Vapnik Chervonenkis (VC) Dimension

In order to keep the notational overhead to a minimum, we will elide the use of
the subscript n indicating the instance size. However, it should be clear that
the discussion applies to a concept class defined as

⋃
n≥1 Cn, where Cn is a class

of concepts over Xn. Let S ⊂ X be a finite set of instances. For a concept
c : X → {0, 1}, we can consider the restriction of c to S, c|S : S → {0, 1},
where c|S(x) = c(x) for x ∈ S. We define the following:

ΠC(S) = {c|S | c ∈ C}. (3.1)

The set ΠC(S) is the class of distinct restrictions of concepts in C defined by
the set S. Alternatively, if S = {x1, . . . ,xm}, we can associate each element of
ΠC(S) with the function values at each of the m points,

ΠC(S) = {(c(x1), . . . , c(xm)) | c ∈ C} (3.2)

Thus, the set ΠC(S) can also be viewed as the set all possible dichotomies
on S induced by C. Clearly for a set S of size m, |ΠC(S)| ≤ 2m, as C consists

27

28 CHAPTER 3. THE VAPNIK CHERVONENKIS DIMENSION

+ +[]

− −[] − +[]

+ −[]

(a)

+ − +
(b)

Figure 3.1: (a) All possible dichotomies on 2 points can be realised using
intervals. (b) A dichotomy on three points that cannot be realised by intervals.

of boolean functions. If for a set S of size m, |ΠC(S)| = 2m, we say that S is
shattered by C.

Definition 3.1 – Shattering. We say that a finite set S ⊂ X is shattered
by C, if |ΠC(S)| = 2|S|. In other words, S is shattered by C if all possible
dichotomies over S can be realised by C.

We can now define a notion of dimension for a concept class C, called the
Vapnik-Chervonenkis dimension, named after the authors of the seminal paper
that introduced this notion to statistical learning theory.

Definition 3.2 – Vapnik Chervonenkis (VC) Dimension. The Vapnik-
Chervonenkis dimension of C denoted as VCD(C) is the cardinality d of the
largest finite set S shattered by C. If C shatters arbitrarily large finite sets,
then VCD(C) =∞.

3.1.1 Examples
The language used to define VC-dimension is a bit different from that commonly
used in machine learning. Let us use some examples to clarify this idea. The
notion of shattering can be phrased as follows, given a finite set of points
S ⊂ X, if we assign labels 0 or 1 (or + or −) to the points in S arbitrarily,
is there a concept c ∈ C that is consistent with the labels? If the answer is
always yes, then the set S is shattered by C, otherwise it is not.

Intervals in R

Let X = R and let C = {ca,b | a, b ∈ R, a < b} be the concept class of intervals,
where ca,b : R → {0, 1} is defined as ca,b(x) = 1 if x ∈ [a, b] and 0 otherwise.
What is VCD(C)? It is easy to see that any subset S ⊂ R of size 2 can be
shattered by C, but not a set of size 3 as shown in Figure 3.1. Given a set of
size three, if the middle point is labelled negative and the other two positive,
there is no interval consistent with the labelling. Thus, VCD(C) = 2.

Rectangles in R2

LetX = R2 and let C be the concept class of axis-aligned rectangles. Figure 3.2(a)
shows a set of size 4 that can be shattered, Fig. 3.2(b) shows a set of size 4 that
cannot be shattered, by providing an explicit labelling that cannot be achieved.
However, the definition of VC dimension only requires the existence of one set

3.1. THE VAPNIK CHERVONENKIS (VC) DIMENSION 29

·

·
··

(a)

+

++

−

(b)

+

++

+−

(c)

Figure 3.2: (a) A set of 4 points on which all dichotomies can be realised using
rectangles. (b) A set of 4 points with a dichotomy that cannot be realised by
rectangles. (c) Any set of 5 points always has a dichotomy that cannot be
realised using rectangles.

·
·

·
(a)

+
−+

(b)

+
−

+
−

(c)

+
+

+
−

(d)

Figure 3.3: (a) A set of 3 points shattered by linear threshold functions. (b)
A dichotomy on a set of 3 points that cannot be realised by linear threshold
functions. (c) & (d) No set of 4 points can be shattered by linear threshold
functions.

of a certain size that is shattered. It is possible to show that no set of size 5
can be shattered. The reason being that there must be one of the five points
that is not the extreme left, right, bottom or top point (at least not uniquely
so). If this point is labelled as negative and all the other (extreme) points are
labelled as positive, then there is no rectangle that can achieve this dichotomy.

Linear Threshold Functions or Linear Halfspaces

The concept class of linear threshold functions is widely used in machine
learning applications. Let us show that the class of linear threshold functions in
R2 has VC-dimension 3. Fig. 3.3(a) shows a set of size 3 that can be shattered
by linear threshold functions; Fig. 3.3(b) shows a set of size 3 that cannot be
shattered by linear threshold functions. No set of size 4 can be shattered by
linear threshold functions. There are two possibilities, either the convex hull
has four vertices in which case if the opposite ends of the quadrilateral are
given the same labels, but adjacent vertices are given opposite ones, then no
linear threshold function can achieve this labelling (Fig. 3.3 (c)). If on the other
hand the convex hull only contains three vertices, if the vertices of the convex
hull are labelled positive and the point in the interior is labelled negative, this
labelling is not consistent with any linear threshold function (see Fig. 3.3 (d)).
The degenerate case when three or more points lie on a line can be treated
easily (e.g. as in the case of Fig. 3.3(b)). Exercise 3.1 asks the reader to show
that the VC dimension of linear halfspaces in Rn is n+ 1.

30 CHAPTER 3. THE VAPNIK CHERVONENKIS DIMENSION

3.2 Growth Function

Let C be a concept class over an instance space X. The growth function
captures the maximum number of dichotomies of a set of size m that can
be realized by C. Clearly if C can shatter some set of size m, then all 2m
dichotomies can be realised—this is the case for any m ≤ VCD(C). We are
interested in understanding the maximum possible growth of the number of
dichotomies for m ≥ VCD(C). We will show that this growth can be bounded
by a polynomial in m of degree VCD(d), rather than exponential in m.

Formally, define the growth function, as follows:

Definition 3.3 – Growth Function. For any natural number m, define,

ΠC(m) = max{|ΠC(S)| | S ⊂ X, |S| = m}.

The goal of this section is to prove Lemma 3.4, known as Sauer’s Lemma.

Lemma 3.4 – Sauer’s Lemma. Let C be a concept class over X with
VCD(C) = d, then for m ≥ d, ΠC(m) ≤

(
me
d

)d.
In order to prove Sauer’s Lemma, it will be helpful to define a function

Φ : N× N→ N defined below.

Definition 3.5. For any m, d ∈ N, define the function,

Φ(m, d) =
d∑
i=0

(
m

i

)
. (3.3)

From the definition of Φ, it is immediate that Φ(m, 0) = Φ(0, d) = 1 for all
m, d ∈ N. Furthermore, Φ is monotonically increasing in both m and d. We
will make use of two additional properties of Φ which are established in the
lemma below.

Lemma 3.6. Consider the function Φ defined in Definition 3.5. The following
hold:

Φ(m, d) = Φ(m− 1, d) + Φ(m− 1, d− 1), (3.4)

Φ(m, d) ≤
(
me

d

)d
. for m ≥ d (3.5)

Proof. The proofs are quite elementary. We will prove (3.4) first.

Φ(m, d) =
d∑
i=0

(
m

i

)
=
(
m

0

)
+

d∑
i=1

(
m

i

)
.

Using the fact that
(
m
0
)

=
(
m−1

0
)
and the combinatorial identity

(
m
r

)
=
(
m−1
r

)
+(

m−1
r−1
)
,

=
(
m− 1

0

)
+

d∑
i=1

((
m− 1
i

)
+
(
m− 1
i− 1

))

=
d∑
i=0

(
m− 1
i

)
+
d−1∑
i=0

(
m− 1
i

)
= Φ(m− 1, d) + Φ(m− 1, d− 1).

3.2. GROWTH FUNCTION 31

Next, we prove (3.5). Using the fact that d/m ≤ 1, we have

Φ(m, d) =
d∑
i=0

(
m

i

)
=
(
m

d

)d d∑
i=0

(
m

i

)
·
(
d

m

)d

≤
(
m

d

)d d∑
i=0

(
m

i

)
·
(
d

m

)i
≤
(
m

d

)d m∑
i=0

(
m

i

)
·
(
d

m

)i
=
(
m

d

)d(
1 + d

m

)m
≤
(
me

d

)d
,

where above we used the fact that for d/m ≤ 1 and i ≤ d, (d/m)d ≤ (d/m)i,
and that 1 + (d/m) ≤ ed/m. (As an aside, observe that for m ≤ d, Φ(m, d) =
2m.)

Finally Lemma 3.7 together with Lemma 3.6 completes the proof of Sauer’s
Lemma (Lemma 3.4).

Lemma 3.7. For any concept class C with VCD(C) = d, ΠC(m) ≤ Φ(m, d).

Proof. We will prove this by induction on m and d simultaneously. We first
check the base cases. If d = 0, then no non-empty finite set can be shattered,
so C contains at most one concept. Thus, for all m, ΠC(m) = 1 = Φ(m, 0).
If m = 0, since there is only one dichotomy of the empty set, clearly ΠC(0) ≤
Φ(0,m). Now, suppose that the result holds for all d′ ≤ d and m′ ≤ m, when
at least one of the inequalities is strict. We also observe that the function Φ is
monotonically increasing in both m and d.

Let S be any set of size m. Let x be a distinguished point of S. Then, by
using the induction hypothesis,

|ΠC(S \ {x})| ≤ ΠC(m− 1) ≤ Φ(m− 1, d). (3.6)

Let us look at the difference between ΠC(S) and ΠC(S \ {x}). Consider
the set

C ′ = {c ∈ ΠC(S) | c(x) = 0,∃c̃ ∈ ΠC(S), c̃(x) = 1,∀z ∈ S \ {x}, c(z) = c̃(z)}.

In words, we look at a dichotomy in ΠC(S \ {x}) and see whether this can
be extended in two distinct ways in ΠC(S), i.e. whether we can keep the
assignments on points in S \ {x} as they were and still retain the choice to
label x as either 1 or 0. Then, we have

|ΠC(S)| = |ΠC(S \ {x})|+ |ΠC′(S \ {x})|. (3.7)

The first term accounts for all the dichotomies on S \ {x}, and the second one
accounts for the dichotomies on S \ {x} that can be extended to two distinct
dichotomies on S.

It suffice to show that VCD(C ′) ≤ d−1, to complete the proof by induction
and (3.4). Note that the concept class C ′ is only defined over the set S. Let
S′ ⊆ S \ {x} be shattered by C ′. (Note that x cannot be included in any set
shattered by C ′ since c′(x) = 0 for all c′ ∈ C ′.) Then, by definition S′ ∪ {x} is
shattered by C, so it must be the case that |S′| ≤ d − 1. This completes the
proof.

32 CHAPTER 3. THE VAPNIK CHERVONENKIS DIMENSION

3.3 Sample Complexity Upper Bound

In this section, we’ll prove that the VC dimension plays a role analogous to
that played by log |Hn| in the case of finite hypothesis classes. Provided the
learning algorithm outputs a consistent hypothesis from some hypothesis class
H which has bounded VC dimension, say d, and the sample size is sufficiently
large as a function of the d, 1/ε and 1/δ (though while still being polynomially
bounded), this yields a PAC-learning algorithm.

Theorem 3.8. Let C be a concept class. Let H ⊇ C be a hypothesis class
with VCD(H) = d, where 1 ≤ d < ∞. Let L be a consistent learner for C
that outputs a hypothesis h ∈ H. Then for every 0 < ε, δ ≤ 1/2, L is a PAC-
learning algorithm for C provided it is given as input a random sample of size
m drawn from EX(c,D), for

m ≥ κ0

(
1
ε

log 1
δ

+ d

ε
log 1

ε

)
,

for some universal constant κ0.

Proof. For two boolean functions f and g, denote by f ⊕ g the boolean defined
as follows:

(f ⊕ g)(x) =
{

1 if f(x) 6= g(x)
0 if f(x) = g(x)

.

Now suppose that c ∈ C is the target concept and D is the target distribution
over the instance spaceX. For any hypothesis h ∈ H, err(h; c,D) = Px∼D

[
(c⊕ h)(x) = 1

]
.

Let H ⊕ c = {h ⊕ c | h ∈ H}. It is easy to show that VCD(H ⊕ c) =
VCD(H) (see Exercise 3.4). We say that a finite set S ⊂ X is an ε-net for
H ⊕ c with respect to distribution D, if for every h ⊕ c ∈ H ⊕ c, such that
Px∼D

[
(h⊕ c)(x) = 1

]
≥ ε, there exists some x ∈ S, such that (h⊕ c)(x) = 1.

We observe that a hypothesis, h, for which Px∼D
[
(h⊕ c)(x) = 1

]
≥ ε is

problematic, as err(h; c,D) ≥ ε. We want to ensure that the consistent learner
does not output any such hypothesis. Any S that is an ε-net for H ⊕ c with
respect to D, rules out such hypotheses being output by a consistent learner, as
they would not be consistent! Thus, it suffices to show that a random sample
of size m drawn from EX(c,D) actually yields an ε-net for H ⊕ c with respect
to D.

The rest of the proof is essentially a clever argument about the probabilities
of certain events set up by doubling the sample size and symmetrizing. This
idea appears in most proofs related to sample complexity bounds, and is our
first introduction to this proof technique.

We will draw a sample S of size 2m in two phases. First draw a sample S1
of size m from EX(c,D). Let A be the event that S1 (actually, the input part
of S1 obtained by ignoring the labels) is not an ε-net for H ⊕ c with respect
to D.1 Now, suppose the event A occurs, then there exists h̃ ∈ H such that
(h̃ ⊕ c)(x) = 0 for all x ∈ S1 and Px∼D

[
(h̃⊕ c)(x) = 1

]
≥ ε . Fix such a

h̃ ∈ H and draw a second sample S2 of size m. Now, let us obtain a lower
1Actually S1 can be multiset, e.g. if D has point masses.

3.3. SAMPLE COMPLEXITY UPPER BOUND 33

bound on the number of elements x in S2 that satisfy (h̃ ⊕ c)(x) = 1. Let Xi

denote the random variable that takes value 1 if the ith element of S2 satisfies
(h̃ ⊕ c)(x) = 1 and Xi takes value 0 otherwise. Thus, if X =

∑m
i=1Xi, then

X is the (random) number of such points in S2. Note that, E [X] ≥ εm, so by
using a Chernoff bound from Eq. (A.3), we have

P
[
X < εm/2

]
≤ P

[
X ≤ E [X]

(
1− 1

2

)]
≤ exp

(
−εm16

)

Provided εm ≥ 16 (which our final bound will ensure), the probability that
|{x ∈ S2 | (h̃⊕ c)(x) = 1}| ≥ εm/2 is at least 1/2.

Now consider the eventB defined as follows: A sample S = S1∪S2 of size 2m
with |S1| = |S2| = m is drawn from EX(c,D), there exists a h̃⊕ c ∈ ΠH⊕c(S),
such that |{x ∈ S | (h̃⊕c)(x) = 1}| ≥ εm/2 and (h̃⊕c)(x) = 0 for all x ∈ S1. We
have slightly abused notation and used h̃⊕c to denote the function in H⊕c and
its retriction to the set S in ΠH⊕c(S). Note that P [B] ≥ 1

2P [A], since if S1 fails
to be an ε-net forH⊕c with respect to D, then as argued above, the probability
of there being a (h̃⊕ c) ∈ ΠH⊕c(S) such that |{x ∈ S1 | h̃⊕ c(x) = 1}| = 0 and
|{x ∈ S2 | c̃(x) = 1}| ≥ εm/2 is at least 1/2. Thus, P [A] ≤ 2P [B].

We will now bound P [B] which is a purely combinatorial problem. Let

Πε
H⊕c(S) =

{
h⊕ c ∈ ΠH⊕c(S) | |{x ∈ S | (h⊕ c)(x) = 1}| ≥ εm/2

}
.

In defining the event B, we can first imagine the entire sample S of size 2m
being drawn from D, denoted by S ∼ D2m, and then for the fixed sample
S a uniformly random partition into S1 and S2 being made. Note that the
distribution over S1 obtained by first drawing S and then randomly partitioning
is exactly the same as that obtained by drawing m examples directly from
EX(c,D). For any fixed h ⊕ c ∈ Πε

H⊕c(S), let Bh⊕c|S denote the event
(conditioned on S) that |{x ∈ S1| (h ⊕ c)(x) = 1}| = 0. Then calculating
the probabilty of Bh⊕c|S is equivalent to the following question: Given 2m
balls out of which r ≥ εm/2 are red and the remaining are black, if we divided
them into two sets of size m each, without seeing the colours, what is the
probability that the first set has no red balls and the second set has all of
them? This probability is simply given by

(
m
r

)
/
(2m
r

)
. We can bound this as

follows:

(
m
r

)(2m
r

) =
r−1∏
i=0

m− i
2m− i ≤

1
2r .

Note that the above bound is still valid for r > m as the probability of Bh⊕c|S
is 0 in that case. Thus, we have We can then bound the probability of the

34 CHAPTER 3. THE VAPNIK CHERVONENKIS DIMENSION

event B as follows:

PS∼D2m [B] = PS∼D2m

PS1,S2

 ⋃
h⊕c∈Πε

H⊕c

Bh⊕c | S

≤ PS∼D2m

 ∑
h⊕c∈Πε

H⊕c

PS1,S2

[
Bh⊕c | S

]
≤ |Πε

H⊕c| · 2−εm/2 ≤
(

2em
d

)d
2−εm/2.

Since we have P [A] ≤ 2P [B], we have that,

P [A] ≤ 2 ·
(

2em
d

)d
2−εm/2.

It remains to be shown that P [A] ≤ δ for the value of m in statement of
the theorem. Although it is a standard calculation, it is worth spelling out in
full at least once. We first observe that it suffices to show that,

m ≥ 2d
ε · log 2 log 2em

d
+ 2
ε · log 2 log 2

δ
.

Thence it suffices for m
2 ≥

2d
ε·log 2 log 2em

d and m
2 ≥

2
ε·log 2 log 2

δ to both hold.
The first is equivalent to showing m

d ≥
4

ε·log 2 log 2em
d , which holds for m ≥

32d
ε·log 2 log 4

ε·log 2 by appealing to Lemma B.1 (noting that 4/(ε log 2) ≥ e for all
ε ≤ 1 and that 2+2 log(2e) ≤ 8). The second clearly holds for m ≥ 4

ε·log 2 log 2
δ .

Hence, picking

m ≥ 4
ε · log 2 max

{
8d log

(
4

ε · log 2

)
, log 2

δ

}
,

is sufficient as stated in the statement of the theorem.

Theorem 3.8 could of course be applied with H = C in the context of
proper PAC learning. However, the more general result will allow us to consider
scenarios where efficient consistent learners could be designed by allowing the
learning algorithm to output a hypothesis from a class that is larger than C.
As we shall see next, the VC dimension essentially completely captures the
statistical complexity of learning.

3.4 Sample Complexity Lower Bounds

In this section, we will show sample complexity lower bounds for any learning
algorithm in terms of the VC dimension. This is a purely information-theoretic
result; no assumption is made about the running time of the algorithm. There
is also no requirement that the algorithm output a hypothesis from the concept
class C.

3.4. SAMPLE COMPLEXITY LOWER BOUNDS 35

Theorem 3.9. Let C be a concept class with VCD(C) ≥ d, where d ≥ 25.2
Then any PAC-learning algorithm (not necessarily efficient) for learning C
using H ⊇ C requires at least max{d−1

32ε ,
1
4ε log 1

4δ} examples.

Proof. In order to show that such an algorithm doesn’t exist, we need to show
that for every learning algorithm L, there exists a target distribution D and a
target concept c, such that with probability strictly greater than δ, the output
hypothesis has error strictly greater than ε.

Suppose for contradiction such a learning algorithm does exist. Note that
the learning algorithm L may itself be randomized, however, we know that
there is an upper bound m = max{d−1

32 ,
1
4ε log 1

δ } on the number of examples
it uses. Thus, if the learning alogrithm output a hypothesis from H ⊇ C, we
can view any fixed sample S of size m as defining a distribution over H. We
will use the probabilistic method to derive a contradiction (see e.g. [2]).

We will first show that m must be at least d−1
32ε . Let T be a set of size d that

is shattered by C. Suppose T = {x1, x2, . . . , xd}, and let D be a distribution
defined as follows: D(x1) = 1 − 8ε, and D(xj) = 8ε/(d − 1) for j = 2, . . . , d.
Since the distribution is only supported on the finite set T , we only need to be
concerned with concepts in ΠC(T). Suppose the learning algorithm receives
a sample S of size m = (d − 1)/(32ε) examples drawn according to D and
labelled according to some target c ∈ ΠC(T). We may assume without loss of
generality that if x1 ∈ S, then L outputs some h such that h(x1) = c(x1). (If
not, we can design an algorithm L′ that runs L to obtain h and chooses h′ ∈ H
which satisfies h′(x1) = c(x1) and h′(xi) = h(xi) for i ≥ 2.)

We first note that the probability that (x1, c(x1)) 6∈ S is small, in particular
at most (1 − 8ε)(d−1)/(32ε) ≤ e−(d−1)/4 ≤ e−6. We also show that with a
reasonable probability S contains fewer than half the examples from the set
T \ {x1} = {x2, . . . , xd}. Let Zi be the random variable that is 1 if the ith
example drawn from D is in the set T \ {x1} and 0 otherwise. Then Zi = 1
with probability 8ε and 0 with probability 1 − 8ε. Let Z =

∑m
i=1 Zi be the

number of examples seen from the set T \ {x1} (possibly with repetitions).
Then E [Z] = d−1

4 and using a Chernoff bound from Eq. (A.4),

P
[
Z ≥ d− 1

2

]
≤ P

[
Z ≥ 2 · E [Z]

]
≤ exp

(
−d− 1

12

)
≤ e−2.

Let us denote the event that (x1, c(x1)) ∈ S and Z < d−1
2 as E . It can be

easily checked that P [E] > 1
2 . Now suppose the target concept c was chosen

uniformly at random from ΠC(T). As T is shattered, |ΠC(T)| = 2d. We can
compute the conditional expectation (on the event E) of the error of h output
by the learning algorithm. Conditioned on E , we know that |S| = Z+1 < d+1

2 .
Thus the conditional (on E) distribution over the target distributions is uniform
over a set of size 2d−|S| > 2(d−1)/2. (In words, the assignment to the examples
observed by the learning algorithm is fixed, but any assignment on the unseen
examples is equally likely.) Then observe that for any fixed hypothesis, h, a
random c conditioned on E results in

err(h; c,D) = 8ε
2(d− 1)(|T | − |S|) > 2ε.

2The condition d ≥ 25 is not really necessary, with a slightly improved argument this
can be shown for any d ≥ 2.

36 CHAPTER 3. THE VAPNIK CHERVONENKIS DIMENSION

Putting everything together we have that,

E
c∼ΠC(T)

 E
S∼EX(c,D)m

h∼L

[
err(h; c,D)|E

] > ε.

Thus, conditioned on the event E , there must exist a target concept c ∈ C for
which E

[
err(h; c,D)

]
> 2ε. Now because h(x1) = c(x1) conditioned on the

event E , we also have that err(h; c,D) ≤ 8ε whenever E occurs. As a result, it
is easy to see that conditioned on event E , the probability that err(h; c,D) ≤ ε
is at most 6/7. Otherwise, we would have,

E
h∼L

[
err(h; c,D)|E

]
<

8ε
7 + 6

7 · ε < 2ε.

This completes the proof of d−1
32ε as a lower bound.

In order to show that m = 1
4ε log 1

4δ as a lower bound, we can use a very
similar (but simpler) argument. In fact, we only need a set T = {x1, x2}, and
two concepts c1, c2 ∈ C, such that c1(x1) = c2(x1) = 0 and c1(x2) 6= c2(x2);
such a set T and concepts c1, c2 exist as VCD(C) ≥ 2. Now define a distribution
D over T such that D(x1) = 1− 4ε and D(x2) = 4ε. It is easy to see that with
probability at least 4δ, a sample of size m = 1

4ε log 1
4δ from D will not have the

point x2. Conditioned on that event, the same argument as above shows that
with probability > 1/4 the error of h output by L will be > ε. That completes
the proof.

3.5 Consistent Learner for Linear Threshold Functions

To end this chapter, we will look at an application to learning linear threshold
functions. Recall that the class of linear threshold functions over Rn is defined
as

LTFn = {x 7→ 1≥0(w · x + w0) | w ∈ Rn, ‖w‖2 = 1, w0 ∈ R}, (3.8)

where 1≥0(z) = 1 if z ≥ 0 and 0 otherwise.
Exercise 3.1 asks you to show that the VC dimentions of this class is n +

1. Thus in order to apply Theorem 3.8, we would like to design an efficient
consistent learner for the class LTFn. The problem is the following: Given
(x1, y1), . . . , (xm, ym), where xi ∈ Rn and yi ∈ {0, 1}, such that there exists
w∗ ∈ Rn, ‖w∗‖2 = 1 and w∗0 ∈ R such that yi = 1≥0(w∗ · xi + w∗0), find some
w, w0, such that yi = 1≥0(w · xi + w0). This problem can be formulated as a
linear program and hence solved in polynomial time.

We consider the following linear program with variables, w0, w1, . . . , wn.
The objective function is constant, so we are in fact only looking for a feasible
point. The constraints are given by:

w0 + w1xi1 + w2xi2 + · · ·wnxin ≥ 0 For all i such that yi = 1 (3.9)
−w0 − w1xi1 − w2xi2 − · · ·wnxin ≥ 1 For all i such that yi = 0 (3.10)

Let us first discuss the second inequality (3.10). An example is classified as
negative if w∗ · x + w∗0 < 0; however, we cannot include strict inequalities as

3.6. EXERCISES 37

part of the linear program as we need the resulting set to be closed. The choice
of 1 is arbitrary, we could have used any strictly positive real number. Let us
show that the above linear program has a feasible solution; given that a feasible
solution exists, there are known polynomial time algorithms to find one.

Let the target linear threshold function be defined by w∗, w∗0 . Let α =
min{−(w∗ ·xi+w∗0) | yi = 0}; we know that α > 0. Consider w∗

α ∈ Rn, w0
α ∈ R;

it can be checked that this is a feasible solution to the constraints defined
by (3.9) and (3.10).

3.6 Exercises

3.1 Show that the concept class of linear halfspaces over Rn defined in Section 3.5
has VC-dimension n+ 1 by proving the following.

i) Give a set of n + 1 points in Rn that is shattered by the class of
linear halfspaces.

ii) Show that no set of m = n+ 2 points in Rn can be shattered by the
class of linear halfspaces. For this you can use Radon’s theorem, the
statement of which appears below.

iii) Prove Radon’s theorem.

Radon’s Theorem
Given a set S = {x1, . . . ,xm} ⊂ Rn, the convex hull of S is the set

{z ∈ Rn | ∃λ1, . . . , λm ∈ [0, 1],
m∑
i=1

λi = 1, z =
m∑
i=1

λixi}.

Let m ≥ n + 2, then S must have two disjoint subsets S1 and S2 whose
convex hulls intersect.

3.2 Prove that for any d ∈ N, there is a concept class C such that VCD(C) =
d, and that for any m ∈ N, ΠC(m) = Φd(m).

3.3 In this question we will consider the learnability of convex sets. Let us
consider the domain to be X = [0, 1]2, the unit square in the plane. For
S ⊂ X a convex set, let cS : X → {0, 1}, where cS(x) = 1 if x ∈ S and
0 otherwise. Let C = {cS | S convex subset of X} be the concept class
defined by convex sets of [0, 1]2.

i) Show that the VC dimension of C is∞. This shows that the concept
class of convex sets of [0, 1]2 cannot be learnt by an algorithm
(efficiently or otherwise) that uses a sample whose size is bounded
by a polynomial in 1/ε and 1/δ alone.

ii) We will consider a restriction of PAC-learning where the learning
algorithm is only required to work for a specific distribution D over
X. Show that if D is the uniform distribution over [0, 1]2, then
the concept class of convex sets is efficiently PAC-learnable in this
restricted sense, where efficiency means running time (and sample
complexity) bounded by a polynomial in 1

ε and 1
δ .

Hint: Consider the algorithm that simply outputs the convex hull of

38 CHAPTER 3. THE VAPNIK CHERVONENKIS DIMENSION

positive points as the output hypothesis. You may use the fact that
the perimeter of any convex set in the unit square can be at most 4.

3.4 Show that VCD(H ⊕ c) = VCD(H).

Chapter 4

Boosting

4.1 Weak Learnability

Let us revisit the definition of PAC-learning. Definition 1.8 places quite stringent
requirements on a learning algorithm that (efficient) PAC learns a concept
class. The learning algorithm has to work for all target concepts in the class,
for all input distributions, and for any setting of accuracy (ε) and confidence
(δ) parameters. It is worthwhile considering what happens when we relax
some of these requirements. In Exercise 1.3, we have seen that fixing the
confidence parameter to be a constant, e.g. δ = 1/4, leaves the notion of PAC-
learnability unchanged. On the other hand, if we only require the learning
algorithm to succeed with respect to certain input distributions, then PAC-
learning is possible for concept classes that are not learnable (efficiently or
otherwise) using a sample size that is polynomial in 1

ε and
1
δ in the distribution-

free sense, i.e. algorithms that have to work with respect to all distributions.1
Exercise 3.3 explores such a concept class. In this chapter, we focus on the
accuracy parameter, ε. The problem of learning is trivial if ε ≥ 1/2 as we can
make a random prediction on an input x ∈ X and achieve an error of 1/2.2
The question we are interested in is what happens when ε = 1/2− γ, for some
γ > 0? For example, one may wonder if it is possible to learn some concept
class up to error 1/4, but not to an arbitrarily small ε?

Surprisingly, the answer to the question above is no, i.e. if we can learn
a concept class up to error at most 1/2 − γ, then we can learn this class up
to error bounded by any ε > 0. This method is known as boosting, as we
take a “weak learning” algorithm and boost it to produce a “strong learning”
algorithm.

1What is most important here is the order of quantifiers. The notion of PAC-learning
requires a single learning algorithm to work regardless of the input distribution. Of course,
the learning algorithm may be adaptive in the sense that depending on what examples it has
received it can change its behaviour.

2If the output hypothesis is allowed to be randomised, that is it takes as input x ∈ X,
and also has access to random coin tosses when making a prediction, then it is immediately
clear that the outlined approach works. Otherwise, we would need that ε > 1

2 + γ; then
we know that one of the two constant hypotheses, always predicting 1, or always predicting
0, gives error at most 1/2, and we can with high confidence determine which one can be

guaranteed to have error at most ε by using a sample of size O
(

1
γ2

)
.

39

40 CHAPTER 4. BOOSTING

γ-Weak Learner

Let us define the notion of weak learning formally. We will let the parameter
γ for weak learning be a function of the instance size n, and the representation
size of the target concept, size(c).

Definition 4.1 – γ-Weak Learning. For γ(·, ·) with γ > 0, we say that L is
a γ-weak PAC learning algorithm for concept class C using hypothesis class H,
if for any n ≥ 0, any c ∈ Cn, any D over Xn, and 0 < δ < 1/2, L given access
to EX(c,D) and inputs size(c), δ and γ, outputs h ∈ Hn that with probability
at least 1− δ, satisfies, err(h) ≤ 1

2 − γ(n, size(c)).
We say that L is an efficient γ-weak PAC learner if H is polynomially

evaluatable, 1/γ(n, size(c)) is bounded by some polynomial in n and size(c),
and the running time of L is polynomial in n, 1/δ, and size(c).

Boosting: A Short History

Boosting has an interesting history and is a prominent example of how a
suitable theoretical question has led to some very practical algorithms. The
notion of weak learning first appeared in the work of Kearns and Valiant [30],
who showed that certain concept classes were hard to learn even when the
requirement was only to output a hypothesis that was slightly better than
random guessing. Shortly thereafter, Freund [23] and Schapire [38] showed that
in the distribution-free setting weak and strong learning are in fact equivalent.
The early boosting algorithms were not easy to implement in practice; Freund
and Schapire [24] designed an improved boosting algorithm, called Adaboost,
which while retaining strong theoretical guarantees was very easy to implement
in practice. Adaboost has enjoyed a remarkable practical success and implementations
of Adaboost and its variants appear in most machine learning libraries.

4.2 The AdaBoost Algorithm

The central idea of the boosting approach is the following. Initially, we can
use a weak learning algorithm that gives us a hypothesis that performs slightly
better than random guessing. We could repeatedly run this weak learning
algorithm, though it may return the same hypothesis. However, if we modify
the distribution so that the hypothesis already returned is no longer valid, i.e.
under the new distribution it has error exactly 1/2, then the weak learning
algorithm is required to provide us with a different hypothesis.3 By doing
this repeatedly, we can combine several hypotheses to produce one that has
low error. All boosting algorithms make use of this high-level approach. The
AdaBoost (for adaptive boosting) algorithm exploits the fact that some hypotheses
may be much better than others and aggressively modifies the distribution
to account for this. Initially, we will concentrate on proving that AdaBoost
succeeds in finding a hypothesis that has training error 0 on a given sample.

The AdaBoost algorithm is described in Alg. 4.1. We assume that AdaBoost
has access to the weak learning algorithm, WeakLearn. WeakLearn gets

3If the error of h is much larger than 1/2 under the modified distribution, then the weak
learning algorithm may simply return 1−h, which is not of much use, since we already have
h.

4.2. THE ADABOOST ALGORITHM 41

Algorithm 4.1: AdaBoost
1 Inputs:
2 Training data (x1, y1), . . . , (xm, ym) drawn from EX(c,D),
3 T (#iterations), δ (confidence parameter)
4 Weak learning algorithm WeakLearn(D, δ)
5 // uniform initial distribution over training data
6 Set D1(i) = 1/m
7 for t = 1, . . . , T do
8 // examples drawn from Dt are passed to WeakLearn
9 Obtain ht ←WeakLearn(Dt, δ/T)

10 Set εt = P(x,y)∼Dt
[
ht(x) 6= y

]
// εt ≤ 1/2− γ, w.p. ≥ 1− δ

T

11 Set αt = 1
2 log

(
1−εt
εt

)
12 // Zt+1 is the normalizing constant
13 Update Dt+1(i) = Dt(i) · exp(−αtyiht(xi))/Zt+1

14 Set h̃ =
∑T
i=t αtht

15 Output: hypothesis ĥ : X → {−1, 1}, where ĥ(x) = sign(h̃(x))

labelled (according to some concept c ∈ C) data from some distribution D and
takes a confidence parameter δ. It guarantees that with probability at least
1 − δ, the error of the returned hypothesis, h, is at most 1/2 − γ. AdaBoost
receives a training sample of m examples drawn from EX(c,D). It defines a
distribution Dt over this sample at each iteration and hence can simulate the
example oracle for the weak learning algorithm. To make the mathematical
analysis simpler, we will assume that the labels yi are in {−1, 1} rather than
{0, 1}. This is a transformation that is frequently used in machine learning and
readers should convince themselves that this does not make any difference. We
assume that sign : R→ {−1, 1}, with sign(z) = −1 if z < 0 and sign(z) = 1 if
z ≥ 0.

Theorem 4.2. Assuming that WeakLearn is a γ-weak learner for the concept
class C, after T iterations, with probability at least 1− δ, the training error of
the hypothesis output by AdaBoost (Alg. 4.1) is 0, provided T ≥ log 2m

2γ2 .

Proof. As further notation, let 1(·) be the indicator of the predicate inside the
parantheses, which takes the value 1 if the predicate is true and 0 otherwise.
Observe that 1(sign(h̃(x)) 6= y) ≤ e−yh̃(x) for y ∈ {−1, 1}.

P(x,y)∼D1

[
sign(h̃(x)) 6= y

]
=

m∑
i=1

D(i) · 1(sign(h̃(xi) 6= yi) (4.1)

≤
m∑
i=1

D1(i) · e−yih̃(xi) (4.2)

We introduce some additional notation. Let h̃t =
∑T
s=t αshs be the weighted

sum of the hypotheses returned in iterations t through T ; and thus, h̃t =
αtht + h̃t+1. We will allow the overall algorithm to fail if any of the calls to
WeakLearn on Line 9 fail. By a simple union bound, all of these calls succeed

42 CHAPTER 4. BOOSTING

with probability at most 1 − δ. We will assume this is the case in the rest of
the proof allowing the algorithm a failure probability δ. Then consider the
following:

m∑
i=1

D1(i) · e−yih̃(xi) =
m∑
i=1

D1(i) · e−yih̃1(xi) (4.3)

=
m∑
i=1

D1(i) · e−α1yih1(xi) · e−yih̃2(xi) (4.4)

= Z2 ·
m∑
i=1

D2(i) · e−yih̃2(xi) (4.5)

= Z2 ·
m∑
i=1

D2(i) · e−α2y2h2(xi) · e−yih̃3(xi) (4.6)

= Z2 · Z3 ·
m∑
i=1

D3(i) · e−yih̃3(xi) (4.7)

We use: in (4.3) h̃ = h̃1, in (4.4) h̃1 = α1h1 + h̃2, in (4.5) D2(i) = D1(i) ·
e−α1yih1(xi)/Z2, in (4.6) h̃2 = α2h2+h̃3, in (4.7)D3(i) = D2(i)·e−α2yih2(xi)/Z3.
Continuing this way, we obtain,

m∑
i=1

D1(i) · e−yih̃(xi) = Z2 · Z3 · · ·ZT ·
m∑
i=1

DT (i) · e−yih̃T (xi)

And thus,

m∑
i=1

D1(i) · e−yih̃(xi) =
T+1∏
t=2

Zt (4.8)

Let us now obtain a bound on Zt+1, for t = 1, . . . , T . We have,

Zt+1 =
∑

i:ht(xi)=yi

Dt(i) · e−αt +
∑

i:ht(xi) 6=yi

Dt(i) · eαt

= (1− εt)e−αt + εte
αt = 2

√
εt(1− εt)

Above we substituted αt = 1
2 log 1−εt

εt
. Letting γt = 1

2 − εt and using the fact
that

√
1− x ≤ e−x/2, we get,

Zt+1 =
√

1− 4γ2
t ≤ e−2γ2

t (4.9)

Now, by the guarantee on the weak learning algorithm, γt ≥ γ for t = 1, . . . , T .
Thus,

∏T+1
t=2 Zt ≤ e−2Tγ2 . Provided T ≥ log(2m)/(2γ2), the training error is

at most 1/(2m) and hence must in fact be 0 (as error on any point causes the
error to be at least 1/m).

It is worth understanding what the algorithm is doing in each iteration. In
Line 13 the algorithm assigns higher weight to examples that were misclassified

4.3. EXERCISES 43

by the hypothesis ht in the tth iteration and lower weight to examples that were
correctly classified. Equation 4.8 shows that the product of the normalizing
constants Zt is an upper bound on the training error of the classifier after
T iterations. Each Zt is guaranteed to be strictly less than 1 because of the
assumption that the weak learner outputs a hypothesis with error at most
1/2 − γ. The choice of αt in Line 10 is chosen to minimize the value of Zt at
that iteration. It is in this sense that the algorithm is adaptive and hence its
name. It is worth observing that αt is also the weight that the hypothesis ht
gets in the final threshold classifier; the more accurate ht is, the greater the
value of αt. Exercise 4.1. asks you to further explore some of the behaviour of
this algorithm.

4.2.1 Bounding the Generalization Error
One way to bound the generalization error of AdaBoost is by ensuring that the
VC-dimension of the hypothesis class used by the weak learning algorithm is
finite.4 Suppose the weak learning algorithm, WeakLearn, outputs hypotheses
from H and VCD(H) = d. Denote by THRESHOLDSk(H) the class of functions
given by

THRESHOLDSk(H) =

x 7→ sign

 k∑
i=1

αkhk(x)

 | hi ∈ H,αi ∈ R

 .

Lemma 4.3. If VCD(H) = d, then VCD(THRESHOLDSk(H)) = O(kd log(kd)).

The proof of Lemma 4.3 is left as Exercise 4.2.. Together with Theorem 3.8
we can obtain a generalization bound on the error of the hypothesis output by
Adaboost.

4.3 Exercises

4.1. Consider the AdaBoost algorithm described in Alorithm 4.1.

a) Show that the error of ht with respect to the distribution Dt+1 is
exactly 1/2.

b) What is the maximum possible value of Dt(i) for some 1 ≤ t ≤ T
and 1 ≤ i ≤ m?

c) Fix some example, say i, let ti be the first iteration such that
hti(xi) = yi. How large can ti be?

4.2. Prove Lemma 4.3.

4.3. Consider the instance space Xn = {0, 1}n and the following hypothesis
class

Hn = {0, 1, x1, x1, x2, x2, . . . , xn, xn}.

The hypothesis class contains 2n + 2 functions. The functions “0” and
“1” are constant and predict 0 and 1 on all instances in Xn. The function

4This is not a stringent requirement on a weak learning algorithm. However, this
condition is not necessary and in fact it can be shown that AdaBoost generalizes even without
such a condition on the weak learning algorithm.

44 CHAPTER 4. BOOSTING

“xi” evaluates to 1 on any a ∈ {0, 1}n satisfying ai = 1 and 0 otherwise.
Likewise, the function “xi” evaluates to 1 on any a ∈ {0, 1}n satisfying
ai = 0 and 0 otherwise. Thus a single bit of the input determines the
value of these functions; for this reason these functions are sometimes
referred to as dictator functions.

a) Show that the class CONJUNCTIONS is 1
10n -weak learnable using

H.
Hint: The factor 10 is not particularly important, just a sufficiently
large constant.

b) Let CONJUNCTIONSk denote the class of conjunctions on at most k
literals. Give an algorithm that PAC-learns CONJUNCTIONSk and
has sample complexity polynomial in k, logn, 1

ε and
1
δ . What would

be the sample complexity if you had used the algorithm for learning
CONJUNCTIONS discussed in the lectures?
Hint: First show that the weak learning algorithm in the previous
part can be modified to be a 1

10k -weak learner in this case.
c) Show that there is no weak learning algorithm for PARITIES using

H.

Chapter 5

Cryptographic Hardness of
Learning

We have seen a few algorithms in the PAC learning framework for concept
classes such as those of conjunctions, decision lists and linear halfspaces. We’ve
also studied the Occam principle that “short consistent hypotheses” generalise
well on unseen data. For finite hypothesis classes the sample complexity scales
polynomially with log |H|, 1/ε and 1/δ. When using infinite hypothesis classes,
the Vapnik Chervonenkis (VC) dimension plays a similar role as log |H|. We’ve
seen upper and lower bounds on sample complexity in terms of VC-dimension
that almost match. In particular, provided one can identify a hypothesis that
is consistent with the observed data (as long as the sample size is large enough
as a function of the VC dimension, ε and δ), we obtain a hypothesis that has
error bounded by ε with respect to the target concept and distribution.

Thus, in a sense the VC-dimension captures learnability exactly, if sample
complexity is the only thing we care about. However, when we consider
computational complexity the picture is considerably different. We’ve already
shown that there are concept classes for which finding proper consistent learners
is NP-hard. In the case of 3-term DNF formulae, we can avoid this NP-hardness
by identifying the output hypothesis from a larger concept class, that of 3-CNF
formulae. One may wonder, whether this is always the case, i.e. can we always
identify a larger hypothesis class from which we can identify a consistent learner
in polynomial time?

In this lecture, we’ll answer this question in the negative, provided a certain
widely believed assumption in cryptography holds. We will show that there
are concept classes that cannot be efficiently PAC-learnt, even in the case of
improper learning, where the output hypothesis is allowed to come from any
polynomially evaluatable hypothesis class.

5.1 The Discrete Cube Root Problem

Let p and q be two large primes that require roughly the same number of bits to
represent. Furthermore, we’ll assume that these primes are of the form 3k+ 2.
Let N = pq be the product of these primes. It is widely believed that factoring
such an N , when p and q are chosen to be random n bit primes, cannot be

45

46 CHAPTER 5. CRYPTOGRAPHIC HARDNESS OF LEARNING

performed in time polynomial in n.1 Let ϕ denote Euler’s totient function,
then we have ϕ(N) = (p− 1)(q − 1). As p and q are chosen to be of the form
3k + 2, 3 does not divide ϕ(N).

Let Z∗N = {i | 0 < i < N, gcd(i,N) = 1}. It is well-known that Z∗N forms a
group under the operation of multiplication modulo N . We consider a function
fN : Z∗N → Z∗N defined as fN (y) ≡ y3 mod N . As 3 does not divide ϕ(N),
it is straightforward to observe that fN is a bijection. As gcd(3, ϕ(N)) = 1,
there exist d, d′ ≥ 1 such that 3d = ϕ(N)d′ + 1 (the existence of d, d′ can be
shown by a constructive proof of Euclid’s algorithm to obtain the gcd). Then,
we have,

(fN (y))d ≡ y3d ≡ yϕ(N)d′+1 ≡ y mod N.

The last equality follows as yϕ(N) ≡ 1 mod N for all y ∈ Z∗N .

Definition 5.1 – Discrete Cube Root Problem. Let two n-bit primes p
and q of the form 3k+ 2, and let N = pq. Let ϕ(N) = (p− 1)(q − 1) and note
that 3 does not divide ϕ(N). Given N and x ∈ Z∗N as input, output y ∈ Z∗N ,
such that y3 ≡ x mod N .

Observe that if we can factorise N , the discrete cuberoot problem is easy to
solve. We can simply obtain ϕ(N) and then find d such that 3d ≡ 1 mod ϕ(N)
using Euclid’s algorithm. However, factoringN is believed to be hard in general
and in fact, no polynomial-time algorithm that finds the discrete cube root is
known. Note that in this case, polynomial-time means polynomial in n, not N .
The discrete cube root problem is also widely believed to be computationally
intractable. We define the formal hardness assumption and use this to show
that there are concept classes that are computationally hard to learn.

Definition 5.2 – Discrete Cube Root Assumption (DCRA). For any
polynomial P (·), there does not exist any (possibly randomized) algorithm, A,
that runs in time P (n) and on input N and x, where N is the product of
two random n bit primes of the form 3k + 2 and x is chosen randomly from
Z∗N , outputs y ∈ Z∗N that with probability at least 1/P (n) satisfies y3 ≡ x
mod N . The probability is over the random draws of p, q, x and any internal
randomisation of A.

Although this is not the main objective here, let us quickly observe how
this assumption may be used in cryptography. The integer N is the public key,
and any message that can be encoded as an element of Z∗N can be encrypted
simply by taking its cube modulo N . Under the discrete cuberoot assumption,
this cannot be decrypted, except if one has access to d, such that 3d ≡ 1
mod ϕ(N). The integer d is the private key.

5.2 A learning problem based on DCRA

Let us try to phrase the question of finding the cuberoot of x ∈ Z∗N as a learning
question. Let us suppose that we have access to a training sample,

S =
{

(x1, y1), (x2, y2), . . . , (xm, ym)
}
,

1Note that factoring can easily be done in time polynomial in N . However, the input
size is O(n) = O(logN) if the number N is provided in binary.

5.2. A LEARNING PROBLEM BASED ON DCRA 47

where y3
i ≡ xi mod N for i = 1, . . . ,m, and xi are drawn uniformly at random

from Z∗N . The learning question is: Given such examples, can we obtain h :
Z∗N → Z∗N , such that for x drawn uniformly at random from Z∗N , it holds with
probability at least 1− δ, that P

[
(h(x))3 6≡ x mod N

]
≤ ε?

How can these pairs (xi, yi) help? It is easy to see that they cannot help,
as it is easy to generate these pairs ourselves. This is because, although finding
the cuberoot is hard, finding the cube is easy. As fN is a bijection, we can
choose yi ∈ Z∗N uniformly at random, and then pick xi ≡ y3

i mod N from
Z∗N . Note that this implies that the distribution of xi is uniform over Z∗N .
Thus, clearly access to random examples of the form (xi, yi) where xi is drawn
from the uniform distribution over Z∗N and y3

i ≡ xi mod N , can’t help to find
h : Z∗N → Z∗N , that satisfies P

[
(h(x))3 6= x mod N

]
6≡ ε, under the DCRA.

This almost fits into our notion of PAC learning, except that the output of
the target function is not in {0, 1}. This can be fixed rather easily. We know
that the output of f−1

N is some 2n bit string. Thus, we can consider 2n different
target functions, (f−1

N,i)2n
i=1, where f−1

N,i is a function which outputs the ith bit
of the function f−1

N . If we could learn all the function, f−1
N,i to accuracy ε

2n ,
then we can reconstruct f−1

N to accuracy ε. Thus, if learning f−1
N is hard, then

at least one of the boolean functions (f−1
N,i)2n

i=1 must also be hard to learn.

5.2.1 A hard-to-learn concept class

So far, we’ve established that if we choose random n bit primes p and q of the
form 3k + 2, there exists a boolean function, f−1

N,i, such that if we get labelled
examples from a specific distribution D over 2n bit strings, viz. the uniform
distribution over bit representatations of elements in Z∗N , we cannot output a
(polynomially evaluatable) hypothesis h, such that Px∼D

[
f−1
N,i(x) 6= h(x)

]
≤

ε
2n . If we can identify a class, C, such that f−1

N,i ∈ C2n, then this also implies
that the class C is not PAC-learnable.

Let us try and understand what such a concept class could be. First, we
note that if d is known, there is a rather simple polynomial time algorithm
to output f−1

N (x). All we need to do is perform the operation xd mod N .
Naïvely computing xd is not efficient as d may be as large as ϕ(N), i.e. d may
itself be 2n bit long. The first thing we need to ensure is that all operations
are repeatedly performed modulo N ; this way none of the representations get
too large. The second is that we start by computing, x mod N, x2 mod N, x4

mod N, x8 mod N, . . . , x2blogϕ(N)c mod N , i.e. we compute x2i mod N for
i = 0, 1 . . . , blogϕ(N)c. To obtain xd mod N , we simply take the product of
the terms x2i mod N such that the ith bit of d is 1. This shows that there
exists a circuit of polynomial size that computes f−1

N where d is hard-wired into
the circuit itself. In particular, this also implies that there exist polynomial-size
circuits for f−1

N,i for all i = 1, . . . , 2n. This gives us the following result.

Theorem 5.3. There exists a polynomial P (·), such that class of concepts, C,
where Cn consists of circuits of size at most P (n), is not PAC-learnable under
the discrete cube root assumption.

48 CHAPTER 5. CRYPTOGRAPHIC HARDNESS OF LEARNING

5.2.2 Reducing the depth

We’ve established that under DCRA, PAC-learning polynomial-sized circuits
is hard. However, in a way, this is the weakest such result one could hope
for. Polynomial-sized circuits are in some sense the most expressive class that
we could ever hope to learn. The question is whether there exist significantly
weaker concept classes that are also hard to learn. We will outline a proof that
one such class, that of concepts representable by circuits whose depth is only
logarithmic in the number of inputs, is also hard to PAC-learn under DCRA.
The complete proof requires showing how low-depth circuits for repeated multiplication
and division can be designed; we will not see these constructions here as they
are quite involved. We will highlight the basic idea and point to the appropriate
references for complete details.

One of the reasons why the circuit described above is deep (it has depth
Θ(n)) is that it requires computing the powers x2i mod N for each value of i =
0, 1, . . . , blogϕ(N)c; the reason being that x2i+1 mod N can only be computed
after x2i mod N has been computed. However, notice that this computation
does not require the knowledge of d, the secret key, at all! So, if instead of being
given the input x, we were given a longer string of length (2n)2 as input, the
concatenation of (x mod N, x2 mod N, x4 mod N, . . . , x2blogϕ(N)c mod N),
the question of learning f−1

N,i would still remain intractable under the DCRA,
as the additional input just represents something we could have computed
ourselves in polynomial time. Note that a hard to learn target function and
distribution now would involve having a distribution over strings of length
(2n)2, where the first 2n bit represent x ∈ Z∗N chosen at the uniformly at
random and the remaining bits are the powers, x2i mod N , i = 1, 2, . . . , blogϕ(N)c.
It is relatively straightforward to show that there exists a circuit of depth
O((logn)2) that when given as input (x mod N, x2 mod N, . . . , x2blogϕ(N)c

mod N) outputs f−1
N (x). To show that there is a circuit of depth O(logn)

requires more work using the techniques of Beame et al. [9]. To summarise, we
have the following theorem.

Theorem 5.4. There exists a constant κ0 > 0, such that the class of circuits,
C, where Cn consists of circuits on n inputs with depth bounded by κ0 logn is
not PAC-learnable under DCRA.

5.3 Chapter Notes

The material covered in this chapter is presented in greater detail in the
textbook by Kearns and Vazirani [32, Chap. 6]. Further details, including
complete proofs and reductions showing cryptographic hardness of learning
other concept classes such as finite automata appear in the original paper
by Kearns and Valiant [31]. The proof that the class of polynomial-size circuits
cannot be PAC-learnt if one-way functions exist, even when membership queries
are allowed (cf. Chap. 6.1), first appeared in the work of Goldreich et al. [25].
The assumption that one-way functions exist is much weaker than the discrete
cube root assumption; indeed, it is hardly conceivable to have any cryptography
at all if one-way functions don’t exist. On the other hand, if the discrete cube
root assumption were to be untrue, it would simply call into question the

5.3. CHAPTER NOTES 49

security of the RSA cryptosystem, but not rule out the existence of other kinds
of cryptosystems.

In general, making stronger assumptions leads to stronger hardness of PAC-
learning results. Recently, there has been work using different kinds of assumptions,
not directly related to cryptography, to establish hardness of PAC-learning of
much smaller classes such as DNF [20, 19, 18]. However, it is worth bearing
in mind that not all of these assumptions have been as thoroughly tested; for
example, recently Allen et al. [1] showed that one of the assumptions made
by Daniely et al. [20] was in fact not true.

Chapter 6

Exact Learning using
Membership and Equivalence
Queries

In the PAC learning framework, we receive labelled examples (x, c(x)), where x
is drawn from some distribution over the instance space X, and c(x) ∈ {0, 1} is
the target label. Thus far, we have focused on two different questions—the first
regarding sample complexity asks how much data is necessary and sufficient
for learning, the second regarding computational complexity asks how much
computational power is necessary to run a learning algorithm. For questions
concerning sample complexity, we have seen that capacity measures such as
the VC dimension give an answer that is essentially tight, in that the lower
and upper bounds on sample complexity in terms of the VC dimention match
each other up to constant and some logarithmic factors. On the question of
computational complexity, we can make a distinction between proper learning,
where the learning algorithm is required to output a hypothesis from the
concept class that is being learnt, and improper learning, where the learning
algorithm may output any polynomially evaluatable hypothesis. For proper
learning, we have already established that even relatively simple concept classes
such as 3-TERM-DNF are hard to PAC-learn unless RP = NP. However, as we
have seen it may be possible to learn these classes if the learning algorithm
is allowed to output hypotheses from larger classes. In the case of improper
learning, we established in Chapter 5 that the class of log-depth circuits is not
PAC-learnable under the discrete cube root assumption.

In this chapter, we will consider a richer model of learning that allows
the learning algorithm to be more “active”. In addition to requesting random
labelled examples from the target distribution and concept, we’ll allow the
learning algorithm to pick an instance x ∈ X and request the label c(x). We’ll
investigate this model in greater detail and show that there are concept classes
that can be efficiently learnt under this more powerful model of learning, that
are not efficiently PAC-learnable under the discrete cube root assumption.1 For
stylistic reasons, it will be easier to define a new model of exact learning that
does not require the existence of a distribution over the instance space, and also

1All hardness results of this kind that we can establish are conditional; they rely on
assumptions such as the discrete cube root assumption or something else.

51

52
CHAPTER 6. EXACT LEARNING USING MEMBERSHIP AND

EQUIVALENCE QUERIES

allows us to drop the accuracy parameter, ε and the confidence parameter, δ,
from consideration. Exercise 6.2 relates this model of exact learning defined in
Section 6.1 to an enriched model of PAC learning. We will see two algorithmic
results in this new model in this chapter.

6.1 Exact Learning with Membership and Equivalence
Queries

We will consider learning algorithms that are allowed to make two different
types of queries: membership queries or value queries,2 and equivalence queries.
As we did in the case of PAC learning in Chapter 1, it is convenient to define
the model in terms of oracles which may be queried by a learning algorithm.

Definition 6.1 – Membership (Value) Query Oracle, MQ(c). A membership
(or value) query oracle for a concept c : X → {0, 1}, MQ(c), when queried with
an instance x ∈ X returns the value c(x).

Next we define the equivalence oracle which takes as input (a representation
of) h : X → {0, 1} and either agrees that h is equivalent to the target concept
c, or returns a “counterexample” x such that h(x) 6= c(x), a proof that c and
h are not equivalent. Formally, we define:

Definition 6.2 – Equivalence Oracle, EQ(c). An equivalence oracle for
a concept c : X → {0, 1}, EQ(c), when queried with a representation of a
hypothesis, h : X → {0, 1}, either returns equivalent indicating that h and
c are equivalent as boolean functions, or a counterexample x ∈ X, such that
c(x) 6= h(x).

We can now define a model of exact learning using membership and equivalence
query oracles. The goal of the learning algorithm is to obtain a hypothesis h,
such that h(x) = c(x) for every x ∈ X. Thus the distribution over the instance
space does not play a role, and indeed in the model we consider we will not have
access to any random examples at all. The goal of exact learning and the lack
of a target distribution over X renders the accuracy parameter, ε, irrelevant.
As there is no inherent randomness, we will also not include the confidence
parameter, δ. However, one could make the distinction between deterministic
learning algorithms and randomised learning algorithms, and in that case one
would have to reintroduce the confidence parameter, δ, to account for the failure
of the algorithm due to its internal random choices rather than the external
randomness in the data. For simplicity, we will only define efficient exact
learning, however, in principle one could individually account for the number
of queries made by the learning algorithm and the amount of computational
time spent. This would allow us to investigate tradeoffs between “information
complexity” and “computational complexity” of learning in the exact learning
framework, as we have done in the PAC learning framework.

2The name membership query originated from the fact that boolean functions may be
viewed as subsets of the instance space; the instances that evaluate to 1 are members of the
set and those that evaluate to 0 are not. Querying the value of a boolean function at a point
can be thought of as querying the membership of this point in this set. The name value
query may be more suitable as it can be applied to non-boolean functions as well.

6.2. EXACT LEARNING MONOTONE-DNF USING MQ + EQ 53

Definition 6.3 – Exact Learning with MQ + EQ. We say that a concept
class C is efficiently exactly learnable from membership and equivalence queries,
if there exists a polynomially evaluatable hypothesis class H, a polynomial p(·, ·)
and a learning algorithm L, such that for all n ≥ 1, for all c ∈ Cn, L when
given access to the oracles MQ(c) and EQ(c), and input size(c), halts in time
p(n, size(c)) and outputs a hypothesis h ∈ Hn, such that for each x ∈ Xn,
h(x) = c(x), i.e. h is equivalent to c. Furthermore, we required that every
query made by L to EQ(c) is with some h ∈ Hn.

The model of exact learning may seem quite far removed from the practice
of machine learning, and in some ways it is. However, it is designed to allow us
to isolate interesting results and design learning algorithms. The key addition
is the ability to make membership queries. From a point of view of practical
machine learning, one may imagine that we can identify expert human labellers
to provide responses that would simulate an MQ(c) oracle;3 it is harder to
expect humans to be able to simulate an EQ(c) oracle. The latter however is
primarily defined for mathematical convenience. Exercise 6.2 shows how any
algorithm designed in the exact learning with MQ + EQ framework allows one
to design a PAC learning algorithm provided the algorithm has access to the
membership oracle MQ(c). Thus, in short if one is willing to settle for a PAC-
guarantee, i.e. err(h) ≤ ε with probability at least 1 − δ, then access to the
equivalence oracle EQ(c) is not necessary.

We will now focus on learning algorithms for two concept classes. In
Section 6.2, we show that the class of monotone DNF formulae is efficiently
exactly learnable using membership and equivalence queries. In Section 6.3,
we show how to learn languages that are recognizable by deterministic finite
automata (DFA), which is also the class of regular languages. In that section, it
will be convenient to move somewhat away from the specific learning framework
introduced above, but we will limit those changes and that discussion to that
section.

6.2 Exact Learning MONOTONE-DNF using MQ + EQ

In this section, we show that the concept class MONOTONE-DNF that is
not known to be PAC-learnable is in fact exact learnable using membership
and equivalence queries. Exercise 6.1 asks you to show that the problem of
learning DNF formulae and MONOTONE-DNF formulae are equivalent (up
to polynomial time reductions) in the PAC Learning framework discussed in
Chapter 1. However, while the results in this section together with Exercise 6.2
show that MONOTONE-DNF formulae are learnable in the PAC learning framework
with access to an MQ oracle, the same is not known for learning DNF formulae.
In fact, a result of Angluin and Kharitonov [4] suggests that for learning
DNF formulae, access to a membership query oracle, MQ(c), does not help for
learning DNF formulae under certain plausible assumptions used in cryptography.

3Recently this has become easier using various online labelling services that allow
interaction with humans, a catchall term for which is “crowdsourcing”. There are of course
still practical considerations, such as whether one should expect examples constructed by
learning algorithms to be classifiable by humans. However, this distinction is not unlike
many others when comparing theory and practice. Willingness to ignore such considerations
is a price that we must pay in order to be able to develop the suitable theory.

54
CHAPTER 6. EXACT LEARNING USING MEMBERSHIP AND

EQUIVALENCE QUERIES

Taken together this suggests a separation with regards to polynomial time
learnability between the PAC learning framework, or the PAC learning framework
with access to an MQ oracle. However, the main evidence we have for the
hardness of learing DNF formulae is our inability to have come up with a
polynomial time learning algorithm.4

Let us formally define the class of concepts that are represented bymonotone
DNF formulae. A term is a conjunction over the literals; we say that a term is
monotone if the conjunction only contains positive literals, i.e. literals that are
variables (but not their negations). A monotone DNF formula is a disjunction
of monotone terms. The class MONOTONE-DNF consists of concepts that can
be expressed as monotone DNF formulae. Let c be a monotone DNF formula
that contains s terms. Any term Ti that is part of c can be associated with a
subset Si ⊆ [n], i.e. Ti ≡

∧
j∈Si

xj . We assume that c is of the form that if Ti

and Tj are both terms of c, with Si and Sj being the corresponding subsets of
variables appearing in them, then it is not the case that Si ⊆ Sj . If it were
the case, dropping Tj from c would yield a formula that represents the same
boolean function. We will refer to this as the minimal representation of c; it
is not hard to show the uniqueness of minimal representations for monotone
DNF formulae, justifying the use of the definite article “the”.

Algorithm 6.1: Learning MONOTONE-DNF using MQ + EQ oracles
1 Let ϕ ≡ 0 // Always predict false
2 Let s← false // Determine whether we have succeeded
3 while s = false do
4 Let ans be the response of EQ(c) to query ϕ
5 if ans = equivalent then
6 s← true
7 break
8 else
9 Let a = ans be the counterexample

10 // It must be that ϕ(a) = 0 and c(a) = 1
11 Let S = {i | ai = 1}
12 for j ∈ S do
13 a′ ← a
14 a′j ← 0
15 Let y be response to MQ(c) with query a′
16 if y = 1 then
17 a← a′

18 T ← {i | ai = 1}

19 ϕ← ϕ ∨

∧
j∈T

xi

20 Output: Hypothesis ϕ

4There have been recent attempts to establish the hardness of learning DNF formulae
based on assumptions from average case complexity theory. See the discussion in Section 5.3
for some discussion about this.

6.3. LEARNING DFA 55

Alg. 6.1 presents an algorithm for learning MONOTONE-DNF using membership
and equivalence queries. We will prove the following theorem.

Theorem 6.4. The class MONOTONE-DNF is exactly learnable using MQ +
EQ.

Proof. Let c be the target monotone DNF formula. Let n denote the number
of variables and let s be the number of terms in the minimal representation of
c, i.e. there isn’t any term in c that implies another. The learning algorithm
is allowed running time that is polynomial in n and s.

We argue that every iteration of the while loop on Line 3 of Alg. 6.1 finds
a term T that is present in the target monotone DNF formula c, that we have
not yet included in ϕ. First, we establish that if ϕ(x) = 1 at any stage in
the algorithm, then c(x) = 1. Clearly, it is the case at the beginning of the
algorithm; we’ll show that if it holds at the beginning of the while loop (Line 3
of Alg. 6.1), then it continues to hold at the next iteration of the while loop.

Since, ϕ(x) = 1 implies c(x) = 1, any counterexample a that establishes
that ϕ 6≡ c must be such that c(a) = 1 and ϕ(a) = 0. Let P = {j | Tj(a) = 1}
denote the indices of terms in the minimal representation of c that are satisfied
by a. As c(a) = 1, we know that P is non-empty. We claim that when the for
loop on Line 11 of Alg. 6.1 ends, it is the case that there is exactly one index
j in P is such that Tj(a) = 1, where a is now the assignment updated in the
for loop. Clearly, that there is at least one such index j is ensured by the if
statement on Line 15, as a will never be modified to be such that c(a) = 0. On
the other hand, if there were two such indices, say j and j′, then let i ∈ [n] be
the smallest index such that xi is a literal in Tj , but not in Tj′ . Setting ai = 0
would have continued to have satisfied Tj′ , and hence this is what would have
happened in the if clause of Line 15. A similar argument also shows that all
bits of a that could have been set to 0 and still have allowed a be a satisfying
assignment of some term Tj for j ∈ P , would have been set to 0. Thus, Line 18
finds a new term that appears in the minimal representation of c, but is not
(yet) in ϕ and adds it to ϕ. This also shows that at the end of the while loop,
it continues to be the case that ϕ(x) = 1 implies c(x) = 1. Since each new term
added is a term that is actually a term in the minimal monotone DNF formula
representing c, this can happen at most s times, after which the algorithm has
exactly identified c.

Thus, the algorithm makes at most s queries to EQ(c), and at most n · s
queries to MQ(c). Clearly, the running time of the algorithm is polynomial in
n and s.

6.3 Learning DFA

In this section, we will consider the problem of learning Discrete Finite Automata
(DFA). We will deviate from the notation introduced in Definition 6.3 slightly,
in that we will not require the input instances to be all strings of the same
length and the output hypothesis will itself be a DFA which will recognize a
language over some finite alphabet Σ.

We will introduce some notation that will be primarily restricted to this
section and the corresponding exercises. Let ε denote the empty string which
has length 0 and let Σ be a finite alphabet. For i ≥ 0, we denote by Σi finite

56
CHAPTER 6. EXACT LEARNING USING MEMBERSHIP AND

EQUIVALENCE QUERIES

s0 s1 s2 s3

0 0 0 0

1 1 1

1

Figure 6.1: A DFA that accepts words in {0, 1}∗ in which the number of times
1 appears is 3 modulo 4.

strings of length i using the alphabet Σ, and let Σ∗ denote the set of finite
strings over Σ, i.e.,

Σ∗ =
⋃
i≥0

Σi.

We refer to elements of Σ∗ as strings or words. Given two words u, v ∈ Σ∗, the
word uv denotes the word obtain by concatenating the two strings.

A deterministic finite automaton is defined by a 5-tuple, (Q,Σ, δ, q0, F),
where Q is a finite set of states, Σ is the finite alphabet, δ : Q × Σ → Q
is the transition function, q0 ∈ Q is the starting state, and F ⊆ Q is the
set of accepting states. A DFA can be represented by a directed graph with
nodes denoting the states and labelled directed edges representing the transition
function. The label associated with an edge is a letter in Σ and the (directed)
outdegree of every node is exactly |Σ|. The starting state, q0 is marked with
an incoming arrow unconnected to any other node, and the accepting states
are marked by using nodes with double circles. Figure 6.1 shows an example
of a DFA; the DFA accepts words over the alphabet {0, 1} where the number
of times 1 appears is an integer that is 3 modulo 4. We will use this example
to illustrate the algorithm in this section.

6.3.1 Acess Words and Test Words
Let L be the language over Σ recognized by some DFA A. Let |A| denote the
number of states of A and suppose that A is the smallest such DFA recognizing
L. The learning algorithm will maintain a pair of sets, (Q,T), where Q ⊆ Σ∗
contains access words and T ⊆ Σ∗ contains test words. We define the notion
of T -equivalence given a non-empty T ⊆ Σ∗.

Definition 6.5. Given a non-empty set T ⊆ Σ∗ and a language L, we say
that two words v, w ∈ Σ∗ are T -equivalent for L, denoted by v ≡T w, if vu ∈ L
if and only if wu ∈ L for every u ∈ T .

It is easy to see that T -equivalence is indeed an equivalence relation as all
the three properties: reflexivity, symmetry, and transitivity, are immediate. As
the target language L we are seeking to learn is fixed, we will not make any
dependence on L explicit. However, implicitly, all notions defined also depend
on the language L.

We next what it means for a pair (Q,T) or access and test words to be
separable and closed.

6.3. LEARNING DFA 57

Definition 6.6. A pair (Q,T) of access and test words is separable if there
are no two words q, q′ ∈ Q such that q ≡T q′.

Definition 6.7. A pair (Q,T) of access and test words is closed if for every
q ∈ Q and every a ∈ Σ, there exists some q′ ∈ Q, such that qa ≡T q′.

6.3.2 Constructing a Hypothesis Automaton
Suppose (Q,T) is a pair of access and test words and further suppose that
ε ∈ Q and that the pair (Q,T) is both separable and closed. Then, we can
construct hypothesis automaton A(Q,T), defined to be (Q,Σ, δ, q0, F), where

• δ(q, a) = q′ where q′ is the unique word in Q such that qa ≡T a′. The
existence of q′ follows from the fact that (Q,T) is closed; the uniqueness
follows from the fact that (Q,T) is separable.

• q0 = ε.

• F = {q ∈ Q | q ∈ L}. Note that F can easily be determined using access
to the membership oracle, MQ for L.

Figure 6.2 shows the construction of the corresponding automata A(Q,T)
whenever the pair is separable and closed in the simulation of Algorithm 6.2.

6.3.3 Properties of Access and Test Words
We now prove a few lemmas that will help us prove the correctness and
termination in polynomial time of the Algorithm 6.2.

Lemma 6.8. Suppose that A is an automaton with the minimum number
of states recognizing L. Let (Q,T) be a pair of access and test words that is
separable. Then |Q| ≤ |A|.

Proof. Suppose for the sake of contradiction |Q| > |A|, then there must exist
two words q, q′ ∈ Q such that q and q′ reach the same state in the automaton
A. However, this means that for any u ∈ Σ∗, qu and q′u will reach the same
state in A. This must mean that q ≡T q′, a contradiction.

The next lemma shows that provided the pair (Q,T) is separable, if it is
not also closed, we can add some new word q′ so that (Q ∪ {q′}, T) remains
separable.

Lemma 6.9. Let (Q,T) be a pair of access and test words that is separable,
but not closed. Then there exists q′ 6∈ Q, such that (Q ∪ {q′}, T) is separable.
Furthermore such a q′ can be identified in time polynomial in |Q|, |T | and |Σ|
using access to the membership oracle, MQ, for L.

Proof. Given set T and any set of words W , we observe that whether or not
any two words in W are T -equivalent can be determined by making |T | · |W |
membership queries. We can consider the set of words Q ∪ {qa | q ∈ Q, a ∈
Σ} which has size no greater than |Q| · (|Σ| + 1). Thus, by making at most
|Q| · |T | · (|Σ|+ 1) queries, and in time polynomial in |Q|, |T | and |Σ|, we can
find a q′ 6∈ Q, such that (Q ∪ {q′}, T) remains separable.

58
CHAPTER 6. EXACT LEARNING USING MEMBERSHIP AND

EQUIVALENCE QUERIES

Finally, the next lemma shows that if (Q,T) is separable and closed, and
if the resulting automaton, A(Q,T) is not identical to the target automaton A,
then using a counterexample, w ∈ Σ∗, we can find words q′ and t′, such that
(Q ∪ {q′}, T ∪ {t′}) remains separable.

Lemma 6.10. Suppose (Q,T) is separable and closed. If w ∈ Σ∗ is such
the behaviour of A(Q,T) is different from the behaviour of A on w, i.e. w
is a counterexample, then in time polynomial in |w| and using at most |w|
membership queries, we can identify q′ 6∈ Q and t′, such that (Q∪{q′}, T ∪{t′})
is separable.

Proof. Let n = |w| and we consider the state transitions of A(Q,T) on w. We
thus have,

q0
w1−→ q1

w2−→ q2
w3−→ · · · wi−→ qi

wi+1−→ qi+1
wi+2−→ · · · wn−→qn.

Above the states qi, represented by words in Q, may not be unique, so we use
the pair (qi, i) to distinguish possible multiple occurrences of the same word.
We say that the pair (qi, i) is correct if qiwi+1 · · ·wn ∈ L if and only if w ∈ L.
The fact that q0 = ε implies that (q0, 0) is correct, and the fact that w is a
counterexample implies that (qn, n) is not correct. Thus, there must be some
i ∈ {0, . . . , n− 1}, such that (qi, i) is correct and (qi+1, i+ 1) is incorrect. We
can identify one such i by making no more than |w| membership queries.

Having identified such an i, let q′ = qiwi+1 and let t′ = wi+2 · · ·wn. Setting
Q′ = Q ∪ {q′} and T ′ = T ∪ {t′}, in order to show that (Q′, T ′) is separable,
we need to show that no two words in Q′ are T ′-equivalent. Obviously, since
T ⊆ T ′ and since (Q,T) was separable, no two words in Q can be T ′-equivalent.
Also, for the same reason, the only word q ∈ Q that can possibly be T ′-
equivalent to q′, is qi+1. This is because we know that qiwi+1 ≡T qi+1, so
if qiwi+1 ≡T ′ qj , then qj ≡T qi+1, which can only happen if j = i + 1 by
separability of (Q,T). However, the addition of t′ to T to obtain T ′, ensures
that qiwi+1 6≡T ′ qi+1, as (qi, i) was correct and (qi+1, i + 1) was not. Thus,
(Q′, T ′) is separable as required.

6.3.4 The L∗ Algorithm
Algorithm 6.2 shows the L∗ algorithm of Angluin [3]. Figure 6.2 shows the
simulation of this algorithm when the target language is the one recognized by
the automaton in Figure 6.1.

The main result we prove here is the following.

Theorem 6.11. Let L ⊆ Σ∗ be a regular language over Σ and let A be an
automaton with the fewest states recognizing L. Algorithm 6.2 when given
access to a membership oracle, MQ, and equivalence oracle, EQ, for L, outputs
a hypothesis automaton that recognizes L. The running time of the algorithm is
polynomial in |A|, Σ and n, where n is the length of the longest counterexample
returned by EQ.

Proof. We first prove the termination condition. Line numbers referred to
Algorithm 6.2. We note that as long as (Q,T) is not separable and closed, the
loop in Line 2 increases the size of |Q| by at least 1. Likewise if we are in the
else part on Line 10, then the size of |Q| increases by at least 1. Lemma 6.8

6.4. EXERCISES 59

Algorithm 6.2: L∗: Learning DFA using MQ + EQ oracles
1 Let Q← {ε}, T ← {ε}
2 while true do
3 while (Q,T) not separable and closed do
4 Use Lemma 6.9 to obtain q′
5 Q← Q ∪ {q′}
6 // (Q,T) now separable and closed
7 Let A(Q,T) be hypothesis automaton
8 Let ans← EQ(A(Q,T))
9 if ans = equivalent then

10 break
11 else
12 Let w ∈ Σ∗ be the counterexample
13 Use Lemma 6.10 to obtain q′, t′
14 Q← Q ∪ {q′}
15 T ← T ∪ {t′}
16 Output: Hypothesis A(Q,T)

State Action

1 Q = {ε}, T = {ε}
ε

0, 1

2 Receive counterexample 111 Set Q = Q ∪ {1}, T = T ∪ {11}

3 Q = {ε, 1}, T = {ε, 11} ε 1

0 0

1

1

4 Receive counterexample 111 Set Q = Q ∪ {11}, T = T ∪ {1}
5 Q = {ε, 1, 11}, T = {ε, 1, 11}

Make (Q,T) closed Set Q = Q ∪ {1111}, T = T ∪ {1}

6 Q = {ε, 1, 11, 111}, T = {ε, 1, 11} ε 1 11 111

0 0 0 0

1 1 1

1

Figure 6.2: Simulation of the L∗ algorithm (Alg. 6.2) with the target
automaton from Fig. 6.1
.

shows that the size of |Q| ≤ |A|, as a result the algorithm must terminate
correctly with automaton A(Q,T) exactly recognizing the target language L.

The runtime argument follows from Lemma 6.9 and Lemma 6.10.

6.4 Exercises

6.1 The class MONOTONE-DNFn,s over {0, 1}n contains boolean functions
that can be represented as DNF formulae with at most s terms over
n variables, and where each term only contains positive literals. Then

60
CHAPTER 6. EXACT LEARNING USING MEMBERSHIP AND

EQUIVALENCE QUERIES

define,

MONOTONE-DNF =
⋃
n≥1

⋃
s≥1

MONOTONE-DNFn,s.

The class DNF is defined analogously, except that the literals in the terms
may also be negative. An efficient learning algorithm is allowed time
polynomial in n, s, 1

ε and 1
δ . Show that if the class MONOTONE-DNF is

efficiently PAC-learnable, then so is DNF.

6.2 Let C be a concept class that is exactly efficiently learnable using membership
and equivalence queries. We will consider the learnability of C in the
standard PAC framework. Prove that if in addition to access to the
example oracle, EX(c,D), the learning algorithm is allowed to make
membership queries, then C is efficiently PAC-learnable. Formally, show
that there exists a learning algorithm that for all n ≥ 1, c ∈ Cn, D over
Xn, 0 < ε < 1/2 and 0 < δ < 1/2, that with access to the oracle EX(c,D)
and the membership oracle for c and with inputs ε, δ and size(c), outputs
h that with probability at least 1 − δ satisfies err(h) ≤ ε. The running
time of L should be polynomial in n, size(c), 1

ε and 1
δ and the h should

be from a hypothesis class H that is polynomially evaluatable.

Chapter 7

Statistical Query Learning

All the learning frameworks we’ve studied so far have assumed that the learning
algorithms have access to “perfect data”. This is clearly not an accurate
reflection of what one would encounter when accessing data in the real-world.
In this chapter, we shall study a model that seeks to capture noise or imperfections
in the observed data. Some of the learning algorithms we’ve studied are not
robust to noise; we’ll study modifications to these algorithms that make them
robust to noise. For some concept classes, there is evidence that while these are
learnable in the absence of noise, there may not exist any efficient algorithms
for learning these classes in the presence of noise.

7.1 Random Classification Noise Model

We begin by studying what can be considered as a “white noise” model. The
data we receive has labels flipped independently with probability η. Let us
define the example oracle with random classification noise formally.

Definition 7.1 – RCN Example oracle, EXη(c,D). An example oracle
with random classification noise rate η, for a concept c over instance space X
and for distribution D over X, denoted by EXη(c,D), when called returns the
following: x ∈ X is drawn according to the distribution D, independently of
all other random choices, with probability 1 − η, it returns (x, c(x)) and with
probability η returns (x, 1− c(x)).

Before we study algorithms that can be implemented using such a noisy
example oracle, let us make a couple of observations. The noise is assumed to
be independent in each example; the case when noise could be correlated or a
function of the instance can be much harder to deal with. Clearly, no learning
algorithm can succeed when the noise rate, η, equals 1

2 , as the labels have
nothing to do with the target concept in that case. We’ll assume that η < 1

2 ; if
η > 1

2 , we are just trying to learn the flipped concept. The measure of interest
is 1 − 2η: the smaller the value, the harder the learning problem. Thus, we
will allow the sample complexity and running time of our algorithms to depend
polynomially on 1

1−2η . The requirement for the output hypothesis h remains
exactly the same as in the PAC-learning framework, we want err(h; c,D) =
Px∼D

[
h(x) 6= c(x)

]
≤ ε, i.e. we are comparing ourselves to the true target

61

62 CHAPTER 7. STATISTICAL QUERY LEARNING

function (not with a noisy target). Let us formally define the model of PAC-
learning in the presence of random classification noise.

Definition 7.2 – PAC Learning with Random Classification Noise. For
n ≥ 1, let Cn be a concept class over instance space Xn and let C =

⋃
n≥1 Cn

and X =
⋃
n≥1Xn. We say that C is PAC learnable with Random Classification

Noise (RCN) using the hypothesis class H if there exists an algorithm L that
satisfies the following: for every n ∈ N, for every concept c ∈ Cn, for every
distribution D over Xn, for every 0 < ε < 1/2, for every 0 < δ < 1/2, and for
every 0 ≤ η < 1/2, if L is given access to EXη(c,D) and inputs n, size(c), ε,
δ, and η0, such that 0 ≤ η ≤ η0 < 1/2, L outputs h ∈ Hn that with probability
at least 1 − δ satisfies err(h; c,D) ≤ ε. The probability is over the random
examples drawn from EXη(c,D) as well as any internal randomization of L.
The number of calls made to EX(c,D) (sample complexity) must be bounded
by a polynomial in n, size(c), 1

ε ,
1
δ and 1

1−2η0
and H must be polynomially

evaluatable.
We further say that C is efficiently PAC learnable with RCN using H, if

the running time of L is polynomial in n, size(c), 1/ε, 1/δ and 1/(1− 2η0).

In the definition above, instead of the (clean) example oracle EX(c,D)
introduced in the PAC learning framework, the learning algorithm has access
to the noisy oracle, EXη(c,D). The learning algorithm is also given as input a
parameter η0 <

1
2 , which is an upper bound on the noise rate. It is straightforward

to show that this input, η0, is not really required, the learning algorithm can
simply try all possible upper bounds in a systematic way and then test which
of the produced hypotheses is the (almost) best one (see Exercise 5.4 in [32,
Chap. 5]).

7.1.1 Learning Conjunctions
Let us revisit one of the the first algorithms we studied, Algorithm 1.1 to learn
CONJUNCTIONS from Section 1.3, when there was no noise in the data. The
algorithm started with a hypothesis consisting of a conjunction of all 2n literals;
thus it begins with a hypothesis that always predicts 0. Then for every positive
example (x, 1), it deletes the literals present in its hypothesis that cause this
example to be classified as negative. As long as sufficiently many examples are
used, it is guaranteed that this algorithm outputs a hypothesis that has error
at most ε.

This algorithm does not work when there is noise in the data. For instance,
if an example that was a negative example was observed with label 1 (due to
noise), the algorithm may drop several literals from the hypothesis that are
actually required. The decisions made by the algorithm are not robust as they
are based on a single example. We will design a more robust algorithm for
learning conjunctions. To begin with, let us continue to assume that the data
we receive is noise-free; later, we’ll discuss how this more robust algorithm can
also be used when the data is noisy.

Let c be the target conjunction and let ` be a literal that appears in c.
We will use the notation `(x) = 1 to indicate that the literal ` evaluates to 1
(true) on the instance x ∈ X. For any literal ` that is present in the target
conjunction, it holds that Px∼D

[
`(x) = 0 ∧ c(x) = 1

]
= 0. We would like to

identify all such literals and put them in the output hypothesis. Of course, it

7.1. RANDOM CLASSIFICATION NOISE MODEL 63

is only important to do this for literals that have a significant probability mass
of being false under the distribution. Let us make this idea more concrete.

• A literal ` is said to be significant if Px∼D
[
`(x) = 0

]
≥ ε

8n

• A literal ` is harmful if Px∼D
[
`(x) = 0 ∧ c(x) = 1

]
≥ ε

8n

Clearly, all harmful literals are also significant. Let h be a hypothesis that
is a conjunction of all literals that are significant, but not harmful. Let L
denote the set of all 2n literals, S the set of significant literals, and T the set
of harmful literals; then we have T ⊆ S ⊆ L. Let us analyse the error of h.

err(h) = Px∼D
[
h(x) = 0 ∧ c(x) = 1

]
+ Px∼D

[
h(x) = 1 ∧ c(x) = 0

]
If h(x) = 0, but c(x) = 1, it must be due to a significant literal that is not
harmful which was added to h. If h(x) = 1, but c(x) = 0, it must be due to an
insignificant literal that was not added to h.

err(h) ≤
∑

`∈(S\T)

Px∼D
[
`(x) = 0 ∧ c(x) = 1

]
+

∑
`∈(L\S)

Px∼D
[
`(x) = 0

]
≤ |S \ T | · ε8n + |L \ S| · ε8n ≤

ε

2
We haven’t said how exactly to find significant and harmful literals; however,

it is easy to see that they could be identified almost correctly with high
probability. The size of the sample required to guarantee correctness can be
obtained using Hoeffding’s Inequality (A.2), and it is polynomial in n, 1

ε and
1
δ . More precisely, what this boils down to is using the observation that we can
get an empirical estimate, p̂, of the true probability, p, of some event with the
guarantee that with probability at least 1− δ′, |p̂− p| ≤ τ , by using a sample
of size Θ

(1
τ2 log 1

δ′

)
. The events in consideration will be either (`(x) = 0) or

(`(x) = 0 ∧ c(x) = 1). Ignoring the failure case whose probability is bounded
by δ′, we know that if p̂ < ε/(8n), then p < ε/(8n) + τ . Thus, provided τ
is chosen to be small enough, e.g. τ = ε/(16n), even if we choose identify
whether a literal is significant or harmful using empirical estimates of their
probabilities, we still have err(h) ≤ ε with high probability. This was the
reason to leave some room so that the bound derived about was err(h) ≤ ε/2.
We will choose δ′ = δ/(4n) so that even after considering a union over all
failure events, the probability of the combined failure event is bounded by δ.
From now on, we will avoid spelling out such intricacies in full detail every
time; it will be assumed that the reader can fill in the details. Compared to
Algorithm 1.1 from Section 1.3, this new algorithm is more robust. A single
example is not used to determine whether or not a literal should be present in
the target hypothesis; this decision is made using aggregate statistics.

It is not at all hard to show that if we know the noise rate η, these probability
estimates can be obtained even when receiving samples from EXη(c,D), rather
than EX(c,D). The sample complexity (and hence also the computational
complexity) will be worse by a factor of 1/(1 − 2η)2. However, rather that
showing how these estimates can be obtained with only acess to EXη(c,D) in
each case separately, we will study a model that formalises this idea of using
statistics to design learning algorithms and show that any algorithm in this
framework can always be simulated with access to the noisy example oracle,
EXη(c,D).

64 CHAPTER 7. STATISTICAL QUERY LEARNING

7.2 Statistical Query Model

In the statistical query model, the learning algorithm is not given any access
to examples at all, but instead is given access to a statistical query oracle,
STAT(c,D). As was the case in PAC-learning, let X be the instance space,
c : X → {0, 1} the target concept, and D the target distribution over X. A
statistical query is a tuple, (χ, τ), where χ : X × {0, 1} → {0, 1} is a boolean
function that takes as input an instance x ∈ X and a bit b ∈ {0, 1} (one of
the two possible labels of the instance), and τ is the tolerance parameter. The
response of the oracle, STAT(c,D), to the query (χ, τ), is a value v̂ ∈ [0, 1],
such that, ∣∣∣∣ E

x∼D

[
χ(x, c(x))

]
− v̂
∣∣∣∣ ≤ τ.

Learning Conjunctions using Statistical Queries

Before, we formally define the notion of learning using statistical queries, let us
see how the algorithm we described above can be implemented using statistical
queries. The first task was to identify significant literals. This can be done
easily, for a literal, `, define the query function, χ` : X × {0, 1} → {0, 1}, as
follows:

χ`(x, b) =
{

1 if `(x) = 0
0 if `(x) = 1

The above query does not depend on the bit b ∈ {0, 1} at all. Thus, χ`(x, b) =
1(`(x) = 0), and hence,

E
x∼D

[
χ`(x, c(x))

]
= Px∼D

[
`(x) = 0

]
.

We set the tolerance parameter τ = ε
32n . Let v̂` be the response received

from STAT(c,D) to (χ`, ε
32n), then we treat all literals for which v̂` ≥ ε

16n
as significant. This guarantees that any literal that we call as insignificant
satisfies

Px∼D
[
`(x) = 1

]
≤ 3ε

32n.

In order to identify harmful literals, we use the query χ̃` defined as follows:

χ̃`(x, b) =
{

1 if `(x) = 0 and b = 1
0 otherwise

Again it is easy to see that χ̃`(x, c(x)) = 1(`(x) = 0 ∧ c(x) = 1), and hence

E
x∼D

[
χ̃`(x, c(x))

]
= Px∼D

[
`(x) = 0 ∧ c(x) = 1

]
.

Thus, the STAT(c,D) oracle can be used to identify harmful literals. The exact
details of choosing the tolerance values and completing the proof are left as an
exercise.

7.2. STATISTICAL QUERY MODEL 65

7.2.1 Statistical Query Learnability
Let us formally define the notion of learning with statistical queries.

Definition 7.3 – Efficient Statistical Query (SQ) Learnability. Let C
be a concept class and H a polynomially evaluatable hypothesis class. We say
that C is efficiently learnable from statistical queries using H, if there exists a
learning algorithm, L, and polynomials p(·, ·, ·), q(·, ·, ·), and r(·, ·, ·), such that,
for all n ∈ N, for every target concept c ∈ Cn, for every distribution D over
Xn, for 0 < ε < 1

2 , L with access to the statistical query oracle, STAT(c,D),
and inputs n, ε and size(c), satisfies the following:

• For any query (χ, τ) made by L, the predicate χ can be evaluated in time
q(n, size(c), 1

ε) and 1
τ is bounded by r(n, size(c), 1

ε)

• L halts in time bounded by p(n, size(c), 1
ε)

• L outputs h ∈ H, such that err(h; c,D) ≤ ε

The confidence parameter, δ, doesn’t appears in the definition above; this
is because we require the statistical query oracle, STAT(c,D), to return a
value that is within the tolerance with probability 1. We could extend the
definition of statistical query learnability to allow randomised algorithms, in
which case the confidence parameter would be required to bound the failure of
the algorithm itself. Let us first establish the relatively simple result that any
concept class that is efficiently SQ-learnable is also efficiently PAC-learnable.
We’ll only provide a sketch of the proof, but the main idea is that with access
to the example oracle, EX(c,D), the algorithm can simulate STAT(c,D) with
high probability.

Theorem 7.4. If C is efficiently SQ-learnable using H, then C is efficiently
PAC-learnable using H.

Proof. Let A be the algorithm that learns C using H in the SQ model. Let k be
an upper bound on the total number of queries made to the STAT(c,D) oracle
by A. We simulate the algorithm A; every time a query (χ, τ) is made, we draw
m = Θ(1

τ2 log k
δ) fresh examples from EX(c,D), say (x1, c(x1)), . . . , (xm, c(xm)),

and return 1
m

∑m
i=1 χ(xi, c(xi)). Using the Hoeffding’s Inequality (A.2), we

know that with probability at least 1− δ
k , the following holds:∣∣∣∣∣∣ 1

m

m∑
i=1

χ(xi, c(xi))− E
x∼D

[
χ(x, c(x))

]∣∣∣∣∣∣ ≤ τ.
When A halts, we simply output the hypothesis h that was produced by A. By
using the union bound and as A makes at most k queries, we know that with
probability at least 1− δ, all simulations of the statistical query oracle used to
provide responses to A are valid, and hence the output hypothesis h satisfies,
err(h; c,D) ≤ ε.

The more surprising result that we prove next is that the statistical query
oracle can be simulated even with access to noisy examples, i.e. the oracle
EXη(c,D). This automatically implies that all concept classes learnable in the

66 CHAPTER 7. STATISTICAL QUERY LEARNING

SQ framework are also PAC-learnable with random classification noise. This
formalises the intuition that “robust” algorithms that make decisions on the
basis of statistics rather than individual examples can be adapted to work with
noisy data.

7.2.2 Simulating STAT(c,D) using EXη(c,D)
In order to make the mathematical manipulations simpler, we’ll assume that
the output of boolean functions are in the set {−1, 1}, rather than the more
common {0, 1}. For reasons that will be clear later, we’ll map 0 to 1, and 1 to
−1. We will also require that the query, χ, is defined as, χ : X × {−1, 1} →
{−1, 1}. Note that this still allows us to compute, Px∼D

[
χ(x, c(x)) = −1

]
,

which is what we want as part of the statistical query learning framework,
rather easily. To see this, observe that:

Px∼D
[
χ(x, c(x)) = −1

]
= E

x∼D

[
1− χ(x, c(x))

2

]
= 1

2 −
1
2 E

x∼D

[
χ(x, c(x))

]
Furthermore, for any query, χ : X ×{−1, 1} → {−1, 1}, we can express this as
follows:

E
x∼D

[
χ(x, c(x))

]
= E

x∼D

[
χ(x, 1) · 1(c(x) = 1)

]
+ E

x∼D

[
χ(x,−1) · 1(c(x) = −1)

]
As c(x) ∈ {−1, 1}, 1(c(x) = 1) = 1+c(x)

2 ; similarly, 1(c(x) = −1) = 1−c(x)
2 .

Thus,

E
x∼D

[
χ(x, c(x))

]
= E

x∼D

[
χ(x, 1) · 1 + c(x)

2

]
+ E

x∼D

[
χ(x,−1) · 1− c(x)

2

]
E

x∼D

[
χ(x, c(x))

]
= 1

2

(
E

x∼D

[
χ(x, 1)

]
+ E

x∼D

[
χ(x,−1)

]
+ E

x∼D

[
χ(x, 1)c(x)

]
− E

x∼D

[
χ(x,−1)c(x)

])
We observe that χ(·, 1) and χ(·,−1) are simply functions fromX → {−1, 1}.

The first two expectations on the RHS above don’t depend on the target
concept at all; the last two compute the correlation between some function
from X → {−1, 1} and the target. Formally, we allow the learning algorithm
to make two kinds of queries—target independent and correlational. A target-
independent query is of the form (ψ, τ), where ψ : X → {−1, 1} and τ ∈ (0, 1),
and it receives an answer v̂ψ from STAT(c,D), such that | E

x∼D

[
ψ(x)

]
− v̂ψ| ≤ τ .

A correlational query is also of the form (ϕ, τ), where ϕ : X → {−1, 1} and
τ ∈ (0, 1); in this case, however, the response v̂ϕ of STAT(c,D), satisfies,∣∣∣∣ E
x∼D

[
ϕ(x)c(x)

]
− v̂ϕ

∣∣∣∣ ≤ τ . Thus, it suffices to show that we can simulate

responses of STAT(c,D) to target-independent and correlational queries using
the noisy oracle EXη(c,D). For target-independent queries, the label noise is
irrelevant, as the response to the query doesn’t depend on the target at all.
We only need examples drawn from the distribution D; these are obtained
by simply ignoring the labels of the observed data. We will now show how
to simulate the responses of STAT(c,D) using examples from EXη(c,D) for
correlational queries.

7.2. STATISTICAL QUERY MODEL 67

Simulating responses to correlational queries

Let B(η) denote a random variable taking values in {−1, 1}, which takes the
value 1 with probability 1− η and −1 with probability η. Let (x, c(x)) denote
a random example drawn from EX(c,D), let ξx ∼ B(η) be a random variable
independent of everything else, then (x, c(x)ξx) is distributed as a random
example drawn from EXη(c,D). Consider the following:

E
(x,y)∼EXη(c,D)

[
ϕ(x) · y

]
= E

x∼D

[
E

ξx∼B(η)

[
ϕ(x)c(x)ξx

]]

= E
x∼D

[
ϕ(x)c(x) E

ξx∼B(η)
[ξx]
]

As ξx is independent

= (1− 2η) · E
x∼D

[
ϕ(x)c(x)

]
Suppose we draw m examples from EXη(c,D), say (x1, y1), . . . , (xm, ym) and
let v̂ = 1

m

∑m
i=1 ϕ(xi)yi. Let m be chosen to be large enough such that |v̂ −

E
(x,y)∼EXη(c,D)

[
ϕ(x)y

]
| ≤ τ1 with probability at least 1 − δ. Suppose that we

don’t have access to the exact value of η, but only to some η̂ ≤ η0 (where η0
is an upper-bound on the noise rate) such that |η̂ − η| ≤ ∆/2. We have the
following:

∣∣∣∣ v̂

1− 2η̂ − E
x∼D

[
ϕ(x)c(x)

]∣∣∣∣
≤

∣∣∣∣∣∣∣
v̂

1− 2η̂ −
v̂

1− 2η + v̂

1− 2η −
E

(x,y)∼EXη(c,D)

[
ϕ(x)y

]
1− 2η

∣∣∣∣∣∣∣
≤ |v̂| ·

∣∣∣∣ 1
1− 2η̂ −

1
1− 2η

∣∣∣∣+ 1
1− 2η ·

∣∣∣∣∣v̂ − E
(x,y)∼EXη(c,D)

[
ϕ(x)y

]∣∣∣∣∣
≤ 2∆

(1− 2η0)2 + τ1
1− 2η0

If ∆ and τ1 are chosen so that the RHS above is at most τ , then we have
successfuly simulated the response of the statistical query oracle. This can be
achieved, for instance by setting ∆ = τ

4(1−2η0)2 and τ1 = τ
2(1−2η0) . Choosing

a sample size m that is polynomially large in n, 1
1−2η0

, 1
δ and 1

τ suffices to
achieve this with high probability. In order to find a suitable η̂, we simply run
the algorithm with all possible values of η̂ = i∆ for i = 1, . . . , bη0

∆ c. Clearly, one
of the values among these satisfies the properties that we require of η̂. When
we run the procedure for that particular value, we will obtain a h that with
high probability satisfies, err(h; c,D) ≤ ε. We obtain h1, h2, . . . , hb η0

∆ c
, and we

know that with high probability at least one of theses hypotheses is “good”,
in that it has error at most ε. In order to identify the best (or good enough)
hypothesis from this set, we can simply test each of them on a fresh sample
drawn from EXη(c,D). Simply using the hypothesis h that has the smallest

68 CHAPTER 7. STATISTICAL QUERY LEARNING

empirical error does the trick. This is because for any h, we have,

P(x,y)∼EXη(c,D)
[
h(x) 6= y

]
= (1− η) · Px∼D

[
h(x) 6= c(x)

]
+ η · Px∼D

[
h(x) = c(x)

]
.

= (1− η) · err(h; c,D) + η · (1− err(h; , c,D)
= η + (1− 2η)err(h; c,D).

So even if we evaluate empirical error estimates of h1, . . . , hb η0
∆ c

using EXη(c,D),
provided we pick a large enough sample, using Hoeffding’s inequality (A.2), it
can be shown that picking hi that has the least empirical error estimate suffices.

We’ve described all the main ingredients of the proof of the following
theorem. Writing the proof in full detail is left as an exercise to the interested
reader.

Theorem 7.5. If C is efficiently SQ-learnable using H, then C is efficiently
PAC-learnable with random classification noise using H.

7.3 A hard-to-learn concept class

In Section 7.1.1, we designed an algorithm for learning conjunctions using only
statistical queries. In Exercise 7.1, you are asked to design an SQ algorithm for
learning axis-aligned rectangles in the plane. In fact, most of the efficient PAC
learning we’ve seen so for, those for learning decision lists, 3-CNF formulae, etc.
have analogues that use only statistical queries. Given this one may wonder,
if in fact, every concept class that is PAC-learnable is also SQ-learnable. We
answer the question in the negative. We show that the class PARITIES is
not efficiently learnable using statistical queries. Formally, we will prove the
following theorem in this section.

Theorem 7.6. Any algorithm for learning PARITIES using statistical queries
with ε = 1

10 , when learning a target from PARITIESn, and which makes queries
of the form (χ, τ), where τ ≥ τ0 for each query, must make Ω(τ2

0 · 2n) queries.

Before we sketch a proof of the result, let us look at the statement of the
theorem in greater detail. Efficient SQ learnability requires that the tolerance
parameter for any query not be too small. In particular for efficient learning
parities to accuracy 1

10 , we require that 1
τ0

be bounded by a polynomial in n
(in the case of parities size(c) = O(n)). The statement of the theorem implies
that if the inverse tolerance for all queries is bounded by some polynomial
in n, the algorithm must make 2Ω(n) queries! In particular, this rules out
a polynomial time algorithm for learning PARITIES in the statistical query
model. Furthermore, observe that unlike the result where we showed that
proper learning 3-TERM-DNF is hard unless RP = NP, there are no unproven
conjectures required to prove the hardness of learning PARITIES in the statistical
query framework. The reason for this is that the proof is purely information-
theoretic. In particular, even an algorithm that uses unbounded computation
and uses query functions χ that are not evaluatable in polynomial time (or
indeed even uncomputable ones!), requires a superpolynomial number of queries
to the STAT(c,D) oracle.

Let us now sketch a proof of the result. To make our notation simpler, we
will assume that the instance space is {−1, 1}n, rather than {0, 1}n. We will

7.3. A HARD-TO-LEARN CONCEPT CLASS 69

also assume that the output of boolean functions is in the set {−1, 1}. Then
for a subset S ⊆ [n], the parity function on bits in S, is defined as:

fS(x) =
∏
i∈S

xi

If we interpret a bit xi = −1 as being on and xi = +1 as being off, then fS(x) =
−1 if and only if an odd number of bits in S are on, i.e. fS computes the parity
over bits in S. We will consider U , the uniform distribution over {−1, 1}n, as
the target distribution. We will assume that the distribution is known to the
algorithm, and as a result, without loss of generality, we may assume that the
algorithm only makes correlational queries to the oracle STAT(c,D).

Let us observe some basic facts about PARITIES with respect to the uniform
distribution U . For any non-empty set S, E

x∼U

[
fS(x)

]
= 0. This is because the

uniform distribution U over {−1, 1}n can be viewed as a product distribution
over the individual bits, i.e. all bits are independent. The distribution over
each bit is also uniform, so that E [xi] = 0 for each i. Then, we also have:

E
x∼U

[
fS(x)fT (x)

]
= E

x∼U

∏
i∈S

xi
∏
i∈T

xi

= E

x∼U

 ∏
i∈S∆T

xi

 .
Above, S∆T denotes the symmetric difference of the sets S and T . This
establishes that if S 6= T , then E

x∼U

[
fS(x)fT (x)

]
= 0. Clearly, it is also

the case that E
x∼U

[
(fS(x))2] = 1, since fS(x) ∈ {−1, 1}. Since there are 2n

such parity functions and there are exactly 2n points in {−1, 1}n, the set of
parity functions form an orthonormal basis for the vector space of real-valued
functions defined over {−1, 1}n, with inner product 〈ϕ,ψ〉 = E

x∼U

[
ϕ(x)ψ(x)

]
.

Formally, any ϕ : {−1, 1}n → R can be expressed as:

ϕ(x) =
∑
S⊆[n]

ϕ̂(S)fS(x)

Furthermore, Parseval’s identity establishes that E
x∼U

[
(ϕ(x))2] =

∑
S⊆[n](ϕ̂(S))2.

In particular, if ϕ : {−1, 1}n → {−1, 1}, then
∑
S⊆[n](ϕ̂(S))2 = 1; the coefficient

ϕ̂(S) = E
x∼U

[
ϕ(x)fS(x)

]
.

Suppose that there is an algorithm, A, that learns PARITIES using at most
q queries, each of which has a tolerance parameter larger than τ0. We show that
it must be the case that q/τ2

0 > 2n − 2. For the sake of contradiction, suppose
that this is not the case. We show that in fact there must be a target parity on
which the algorithm fails. The definition of SQ learning requires that a single
algorithm work for all target functions. We will show that this cannot be the
case. We run the algorithm A and every time a query is made, we return the
answer 0. Let h be the target hypothesis when A terminates. We will show that
when q/τ2

0 ≤ 2n − 2, there must be at least two parity functions, represented

70 CHAPTER 7. STATISTICAL QUERY LEARNING

by subsets S and S′, such that for all the queries made by the algorithm 0 was
a valid answer. Let’s first see that this finishes the proof. Clearly, both fS and
fS′ could be a valid target; thus it must be the case that err(h; fS ,U) ≤ 1

10
and err(h; fS′ ,U) ≤ 1

10 . However, Px∼U
[
fS(x) 6= fS′(x)

]
= 1

2 ; thus h cannot
be a 1

10 accurate hypothesis for both fS and fS′ .
Let ϕ1, . . . , ϕq denote the queries made by the algorithm. There is a subtle

point to be mentioned here; in principle the queries made by the algorithm
could be adaptive, i.e. the query depends on past answers from the oracle
STAT(c,D). However, since we always supply 0 as the answer, we may as well
assume that the queries ϕ1, . . . , ϕq are known ahead of time. We claim that
for any ϕ : {−1, 1} → {−1, 1}, there are at most 1

τ2
0

parity functions, such∣∣∣∣ E
x∼U

[
ϕ(x)fS(x)

]∣∣∣∣ ≥ τ0. This follows from that fact that
∑
S⊆[n](ϕ̂(S))2 = 1

and that ϕ̂(S) = E
x∼U

[
ϕ(x)fS(x)

]
. Thus, a single query rules out at most 1

τ2

parities as the possible target, if we supply a response of 0. Consequently, q
queries rule out at most q/τ2

0 parities as the possible target. Provided, q/τ2
0 ≤

2n− 2, there must be at least two different parity functions that are consistent
with all the answers supplied to the algorithm, as a simulation of the oracle
STAT(c,D). This completes the proof.

There is another subtle observation worth making. The above proof sketch
can be made completely rigrorous for deterministic algorithms. However, one
may wonder whether randomized algorithms may help avoid the difficulty of
learning PARITIES. The answer to this is negative, i.e. randomized algorithms
do not help in this case. This can be shown formally by picking a target parity
function uniformly at random and applying Fubini’s theorem. The proof is not
difficult, but the details are somewhat technical, and it is left as an exercise to
the interested reader to fill those in.

7.4 Exercises

7.1 We will consider an extension of the statistical query model, where in
addition to making queries of the form (χ, τ) to the oracle STAT(c,D),
the learning algorithm is allowed access to unlabelled examples from D,
i.e. it may get points x ∈ X drawn according to D, but not the labels
c(x).

a) Briefly argue why any concept that is (efficiently) learnable with
access to STAT(c,D) and unlabelled examples, is also (efficiently)
learnable with access to the noisy example oracle, EXη(c,D).

b) Give an efficient algorithm for learning axis-aligned rectangles in the
plane using STAT(c,D) and unlabelled examples.

7.5 Bibliographic Notes

The variant of PAC learning with random classification noise was introduced
in the work of Angluin and Laird [5]. Our presentation of the statistical query
model differs a bit from that in the textbook by Kearns and Vazirani [32,
Chap. 5]. Bshouty and Feldman [15] first used the idea of separating a general

7.5. BIBLIOGRAPHIC NOTES 71

statistical query into target-independent and correlational queries. The proof
that PARITIES cannot be learnt in the statistical query model appeared in the
work of Kearns [29]. The proof provided in the lecture follows along the lines
of that introduced by Blum et al. [11] who also show lower bounds for general
concept classes in terms of what is called the statistical query dimension.

Of course, the fact that PARITIES is not SQ-learnable does not rule out an
efficient algorithm for learning PARITIES is the presence of random classification.
Blum et al. [12] provide an algorithm whose complexity matches that suggested
by the lower bound in the SQ model. Improving this dependence is a long
standing open problem. It is widely believed that learning parities with noise
is hard and cryptographic systems based on the hardness of this and related
problems have been desgined. Blum et al. [12] also demonstrate the existence
of a concept class that is not polynomial-time learnable in the SQ model, but
can be learnt in polynomial time in the PAC model with random classification
noise.

Chapter 8

Learning Real-valued Functions

So far our focus has been on learning boolean functions. Boolean functions are
suitable for modelling binary classification problems; in fact, even multi-class
classification can be viewed as a sequence of binary classification problems.
Many commonly used approaches for multi-class classification, such as one-vs-
rest or one-vs-one, solve several binary classification problems as a means to
perform multi-class classification. However, sometimes we may need to learn
functions whose output is real-valued (or vector-valued). In this chapter, we
will study linear models and generalised linear models. In order to give bounds
on the generalisation error, we’ll need to introduce some new concepts that
play a role analogous to the VC dimension. We will also study some basic
convex optimisation techniques.

8.1 Learning Real-Valued Functions

Let us start with the general question of learning real-valued functions. Suppose
our instance space is Xn = Rn, though we can easily generalise to other forms
of instance spaces. Let F denote a class of real-valued functions from Rn → R.
Let f? ∈ F , where that f? : Rn → R is the target function.

At this point, it is worth considering models for data. We will let D denote
some joint distribution over Xn × R. So all observations sampled from D are
of the form (x, y), where x ∈ Rn, and y gives us some information about the
target function. It will be convenient to also denote the marginal distribution
of D over Xn by µ. If we generalize the notion of PAC learning directly, we will
restrict the distribution D to have support {(x, f?(x)) | x ∈ Rn}, whenever f?
is the target function. Thus, an example drawn fromD would be the same as an
example obtained from the “example oracle”, EX(µ, f?). When learning real-
valued functions, it is completely unrealistic to assume that we would observe
the target value, f?(x), exactly.

Before we elaborate further on the data model, we need to discuss the
measure of performance. When considering boolean functions, the indicator,
1(h(x) 6= c(x)), is in some sense the only meaningful measure of error at a
given point x. When considering real-valued functions, how far our hypothesis’
prediction h(x) is from f?(x) may matter. We will define this in terms of loss
functions. We denote by `, ` : R × R → R≥0 to be the function; here R≥0

73

74 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

denotes the non-negative real numbers.1 For the most part, we will concern
ourselves in the setting where `(y′, y) = (y′ − y)2. Another notion that is
important is that of the risk functional, which depends on the loss function `
and the distribution D over Xn×R. For some function h : Xn → R, define the
risk of h, denoted by R(h) = R(h; `,D) (we will use the shorthand R(h) when
` and D are clearly from the context), as,

R(h) = R(h; `,D) = E
(x,y)∼D

[
`(h(x), y

]
.

It is worth noting that without some restrictions on the function h and
D, there is no reason to expect that the above expectation exists at all.
Throughout this chapter, we will assume that we are in the setting where
expectations (and when needed higher moments) exist. We will not elaborate
particularly on this point further. Let us now return to our discussion of data
models.

8.1.1 Realizable Setting

In this section, we will restrict ourselves to the case when ` is the squared
loss. Suppose that F is some class of functions. In the realizable setting, any
data generating distribution, D, must satisify the condition that there exists
some f? ∈ F , such that E[y|x] = f?(x) for every x ∈ Rn.2 We can view
this setting as a generalization of the random classification noise setting. Let
f? ∈ F be the target function. For (x, y) ∼ D, denote ξ(x, y) = y − f?(x).
Then ξ(x, y) is a random variable that is independent of x, though its law may
be a function of x, and it satisfies E

[
ξ(x, y)

]
= 0. Alternatively, we can view

the data generating process as follows:

• Draw x ∼ µ.

• Let ξ ∼ νx, where ξ is a real-valued random variable distributed according
to some law νx and satisfies E [ξ] = 0.

• Return (x,x + ξ).

Thus, in this context, realizability refers to the fact that the noise in the
observations is zero-mean. What would be a suitable goal for a learning
algorithm in this context? For some function h : Xn → R, we define the
following quantity, denoted by ε(h) = ε(h; f?, µ) (again we will omit f? and µ
when clear from context), as,

ε(h) = ε(h; f?, µ) = E
x∼µ

[
`(h(x), f?(x))

]
= E

x∼µ

[
(h(x)− f?(x))2

]
. (8.1)

1The non-negativity constraint on the output of ` is not strictly necessary. However,
when using loss functions that can potentially be negative, we need to be more careful to
ensure that we are not achieving trivial results.

2Again, we will avoid getting drawn into technicalities about what happens when the
conditional expectation is not well-defined on some subset of Xn. We shall assume that all
expectations we use are well-defined, though it is possible to remove some of these restrictions.

8.1. LEARNING REAL-VALUED FUNCTIONS 75

We can establish a relationship between R(h), R(f?) and ε(h), as follows:

R(h) = E
(x,y)∼D

[
(h(x)− y)2

]
= E

(x,y)∼D

[
(h(x)− f?(x) + f?(x)− y)2

]
= E

(x,y)∼D

[
(h(x)− f?(x))2

]
+ E

(x,y)∼D

[
(f?(x)− y)2

]
− 2 · E

(x,y)∼D

[
(h(x)− f?(x))(f?(x)− y)

]
= ε(h) +R(f?)− 2 · E

x∼µ

[
(h(x)− f?(x)) · E

y

[
f?(x)− y|x

]]
.

Since E[y|x] = f?(x), the last term above is 0, and we get,

R(h) = R(f?) + ε(h). (8.2)

Note that ε(h) ≥ 0 for all h. Thus, Eq. (8.2) establishes that f? is indeed
the minimizer of the risk. Although, it may seem intuively that this should
be the case, it is something that requires verification. In this case, it holds
because we are using the squared loss, and fixing x, the value v that minimizes
E[(y − v)2|x] is exactly given by v = E[y|x] = f?(x). Thus, the zero mean
assumption for realizability is tied to using squared loss as the notion of error.3

Equation (8.2) also is important in the sense that it suggests an algorithmic
approach. As our algorithm can only have access to a sample S drawn from D,
it is not clear what the empirical counterpart of ε(h) would be. However, the
empirical counterpart of R(h) can easily be defined, indeed it is a fundamental
notion called empirical risk. Let S =

(
(xi, yi)

)m
i=1 ∼ Dm be a sample drawn

from D. For some function h : Xn → R, define the empirical risk of h, denoted
by R̂S(h), as,

R̂S(h) = 1
m

m∑
i=1

`(h(xi), yi). (8.3)

Provided we can find a way to relate the empirical risk to the population
risk, this suggests an algorithmic paradigm where we try to find a function h
that minimizes the empirical risk. This principle is known as the empirical
risk minimization (ERM) principle, and is one of the fundamental concepts in
statistical learning theory.

8.1.2 Non-Realizable Setting
In some way, we don’t need to restrict the data distribution, D, as we did in
the previous section. Let F be some class of functions. Consider the quantity
defined below,

R(F ;D) := inf
f∈F

R(f ;D).

3Indeed, if we were using the absolute loss, we would want to pick the conditional median
and so on.

76 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

Thus R(F ;D) represents how good the class F may be to explain the data
(though it may be scale-dependent, so the absolute value of the above term
may not mean very much). We can still however use any such class F as a
comparator class. Thus, we will phrase our learning goal as finding a hypothesis
function h : Xn → R, such that,

R(h;D) ≤ inf
f∈F

R(f ;D) + ε. (8.4)

Clearly, since F1 ⊆ F2 implies that R(F2;D) ≤ R(F1;D), the larger the
class F for which we can provide a guarantee of the form (8.4) the better the
result. The flip side of this is that the larger the class F we use, the larger the
size of the sample S may need to be to relate the empirical risk to the true risk.
This is the common underfitting vs overfitting tradeoff in machine learning.

Although we have not used such a setting, where we make no assumptions
on the joint distribution over the instances and their labels, in the case of
boolean functions, one can ask a similar question there. This is commonly
known as the agnostic setting in that context.

8.1.3 A General Algorithmic Paradigm
We can now develop a general algorithmic paradigm for learning real-valued
function (or indeed more broadly). Let F be a class of functions from Xn → R
that will serve as our comparator class. Let G be a class of functions from
Xn → R such that G ⊇ F . Let S ∼ Dm be a sample such that the following
holds for all g ∈ G,

|R̂S(g)−R(g)| ≤ ε

3 . (8.5)

Furthermore suppose we can find some ĝ ∈ G, such that,

R̂S(ĝ) ≤ inf
g∈G

R̂S(g) + ε

3 . (8.6)

Then for any f? ∈ F , we have,

R(ĝ)−R(f?) = R(ĝ)− R̂S(ĝ) + R̂S(ĝ)− R̂S(f?) + R̂S(f?)−R(f?)

Since, f? ∈ F ⊆ G, using Eqs. (8.5) and (8.6), we have,

R(ĝ)−R(f?) ≤ ε.

Since f? ∈ F was chosen to be arbitrary, we have,

R(ĝ) ≤ inf
f∈F

R(f) + ε.

Thus, this gives us an algorithm in the non-realizable setting. It also works
in the realizable setting, as we then know that f?(x) = E

[
y|x
]
is the minimizer

of R(f) and also that ε(ĝ) = R(ĝ)−R(f?).
There are two main outstanding issues. The first is to understand when a

guarantee as strong as Eq. (8.5) may hold for a class of functions G. Intuitively,
the “smaller” G is the better from the point of view or relating the empirical

8.2. PROJECTED GRADIENT DESCENT FOR LIPSCHITZ FUNCTIONS77

risk to the true risk. This question will be discussed in detail in Section 8.3.
The second is to design an algorithm to find ĝ that satisfies Eq. (8.6). We
will resort to generic convex optimization techniques for this problem. We
discuss convex optimization briefly in Section 8.2. Intuitively, the “larger” G
is, the easier the optimization problem. Thus, there is a tradeoff between the
statistical complexit of this problem and the computational one, not unlike the
one we’ve seen previously in the context of learning boolean functions. For
reasons of both, statistical guarantees and optimization guarantees, we will
need some restrictions on the range of functions in G as well as on the support
of the distribution D. Together with some concrete applications, these will be
discussed in the next following few sections.

8.2 Projected Gradient Descent for Lipschitz functions

This section can be read independently of the rest of the chapter (or indeed
the lecture notes) and concerns with one specific convex optimization technique
and its analysis. We will briefly describe an algorithm for minimising Lipschitz
convex functions over convex sets. Our treatment of convex optimisation is
at best cursory and for further details the student may refer to any of the
following references [16, 14, 34].

Consider a function f : Rn → R; f is convex if f(λx + (1−λ)x′) ≤ λf(x) +
(1 − λ)f(x′) for all x,x′ ∈ Rn and for all λ ∈ [0, 1]. Let K ⊆ Rn be a closed,
bounded, convex set. We are interested in solving the following constrained
optimisation problem: minimise f(x) subject to x ∈ K. Furthermore, we will
assume that f is differentiable over K and that there exists some L, such that∥∥∇f(x)

∥∥
2 ≤ L for all x ∈ K. Also let B = maxx,x′∈K

∥∥x− x′
∥∥

2 denote the
diameter of K.4

We will see a proof that the average iterate of Projected Gradient Descent
(Algorithm 8.1 is an approximate minimiser of f over K. The algorithm
requires a projection operation: for some point x ∈ Rn, this operation gives the
point in K that is closest to x. More formally, define the projection operator,

ΠK(x) := argmin
x′∈K

∥∥x− x′
∥∥

2 .

Note that such point exists as the set K is closed, and is unique because of the
convexity of K.

Algorithmically, one may wonder how to perform the projection operation.
In general, projection is itself a convex optimisation problem. There are other
convex optimization algorithms that could be used to solve the projection
problem. However, for many applications in machine learning, typically projection
is only required onto fairly simple convex sets, such as `1- or `2-balls. In these
cases, this operation is very easy to perform.

We will first prove a useful property about the projection operator.

Lemma 8.1. For any z ∈ K, if x′ ∈ Rn and x = ΠK(x′), then,

‖z− x‖2 ≤
∥∥z− x′

∥∥
2 .

4Convergence of variants of gradient descent, at different rates, can be established in
much more general convex optimization settings. The settings described above are sufficient
for the purpose of the applications in this chapter; however, an interested reader should refer
to the books [16, 14, 34] and beyond.

78 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

Proof. Consider the following:∥∥z− x′
∥∥2

2 =
∥∥z− x + x− x′

∥∥2
2

= ‖z− x‖22 +
∥∥x− x′

∥∥2
2 − 2(z− x) · (x′ − x)

Now if, (z−x) · (x′−x) ≤ 0 we are done. Suppose for the sake of contradiction
that (z − x) · (x′ − x) > 0. We will establish that x cannot be the projection
of x′ onto K. Consider the following:∥∥λz + (1− λ)x− x′

∥∥2
2 =

∥∥x− x′
∥∥2

2 + λ2 ‖z− x‖22 − 2λ(z− x) · (x′ − x)

This implies that for λ ∈
(

0,min
{

1, (z−x)·(x′−x)
‖z−x‖22

})
,

∥∥λz + (1− λ)x− x′
∥∥

2 <
∥∥x− x′

∥∥
2 .

As K is a convex set and x, z ∈ K, λz + (1−λ)x ∈ K, contradicting the claim
that ΠK(x′) = x. Thus, it must be the case that

∥∥z− x′
∥∥

2 ≥ ‖z− x‖2.

We can now proceed to analyze the convergence of Iterative Projected
Gradient Descent which is presented as Alg. 8.1 below.

Algorithm 8.1: Projected Gradient Descent
1 Input: η, T
2 Pick x1 ∈ K
3 for t = 1, . . . , T do
4 x′t+1 = xt − η∇f(xt)
5 xt+1 = ΠK(x′t+1)
6 Output: 1

T

∑T
t=1 xt

Theorem 8.2. Suppose K is a convex closed set, maxx,x′∈K
∥∥x− x′

∥∥
2 ≤ B,

and that supx∈K
∥∥∇f(x)

∥∥
2 ≤ L. Then Alg. 8.1 run with η = B

L
√
T
, outputs x,

such that,
f(x) ≤ min

x∈K
f(x) + RL√

T
.

Proof. Let xt denote the point at the tth iteration of the gradient descent
procedure. Let x? ∈ K be any point. Then by the convexity of f , we have the
following:

f(xt)− f(x?) ≤ ∇f(xt) · (xt − x?)

= 1
η

(xt − x′t+1) · (xt − x?)

= 1
2η

(
‖xt − x?‖22 +

∥∥xt − x′t+1
∥∥2

2 −
∥∥x′t+1 − x∗

∥∥2
2

)
= 1

2η

(
‖xt − x?‖22 −

∥∥x′t+1 − x?
∥∥2

2

)
+ η

2
∥∥∇f(xt)

∥∥2
2

8.3. RADEMACHER COMPLEXITY 79

We use the bound
∥∥∇f(xt)

∥∥
2 ≤ L and the fact that

∥∥x′t+1 − x?
∥∥

2 ≥ ‖xt+1 − x?‖2,
to obtain,

f(xt)− f(x?) ≤ 1
2η

(
‖xt − x?‖22 − ‖xt+1 − x?‖22

)
+ η

2 .L
2 (8.7)

By convexity of f , it follows that f
(

1
T

∑T
t=1 xt

)
≤ 1

T

∑T
t=1 f(xt). We can

average Eq. (8.7) over t = 1, . . . , T to obtain,

f

 1
T

T∑
t=1

xt

− f(x?) ≤ 1
T

T∑
t=1

(f(xt)− f(x?))

≤ 1
2Tη

(
‖x1 − x?‖22 − ‖xT+1 − x?‖22

)
+ η

2L
2

≤
‖x1 − x?‖22

2Tη + ηL2

2

≤ B2

2Tη + ηL2

2

Setting η = B
L
√
T

and choosing x? to be the minimizer of f in K completes the
proof.

8.3 Rademacher Complexity

Let us now address the question of bounding the generalisation error. Let
G be a class of functions from some space X to the bounded interval [a, b].5
Note that typically, we will not be thinking of G as being the class of target
functions (or hypothesis functions), but functions obtained by composing the
loss function with the class of target functions. Let D be some distribution
over X and let S = (z1, . . . , zm) ∼ Dm be an i.i.d. sample drawn from D. Let
us define the following random variable, Φ(S), as,

Φ(S) = Φ(z1, . . . , zm) = sup
g∈G

 E
z∼D

[
g(z)

]
− 1
m

m∑
i=1

g(zi)

 .

Before we proceed to understand the above object, it is worth thinking
about why we want to bound a random variable defined in terms of the
supremum over G. The output ĥ of a learning algorithm will be a function
of the data S, thus ĥ (which is a random variable) is not independent of S.
Thus, we can’t use standard results to relate the empirical risk R̂S(ĥ) to the
true risk R(ĥ). The class G we will consider will be functions composing the
loss ` with functions in the range of the algorithm. If we can show that Φ(S)
is bounded, both in expectation and in probability, then we can relate R̂S(ĥ)
to R(ĥ) even without the stochastic independence between ĥ and S.

5While some results can be generalized to the case when the range of functions is not
bounded, for simplicity, we will only consider bounded functions.

80 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

8.3.1 (Empirical) Rademacher Complexity
We now define a concept called the Empirical Rademacher Complexity for a
family of functions.

Definition 8.3 – Empirical Rademacher Complexity. Let G be a family
of functions mapping some space X → [a, b] and let S = (z1, z2, . . . , zm) ∈ Xm

be a fixed sample of size m. Then the empirical Rademacher complexity of G
with respect to the sample S is defined as,

R̂ADS(G) = E
σ

sup
g∈G

1
m

m∑
i=1

σig(zi)

 ,
where σ = (σ1, σ2, . . . , σm) are i.i.d. Rademacher random variables, i.e. σi
takes value in {−1, 1} uniformly at random.

The formal reason for defining the Empirical Rademacher Complexity in
this way will become clear when we consider the proof of Lemma 8.5. It
is worth getting some intuitive understanding of this concept as well. The
empirical Rademacher complexity measures how well functions from a class
correlate with random noise, where the notion of noise refers to Rademacher
random variables. This corresponds to our notion that the more complex the
class G, the more easily it can fit noise. In particular, let us suppose that G
is a class of boolean functions (with range {−1, 1}) with VCD(G) ≥ m and let
S be a set that is shattered by G, then R̂ADS(G) = 1. However, Rademacher
complexity can be defined for any class of real-valued functions.6

Let us now define Rademacher complexity, which is defined as the expected
empirical Rademacher complexity of sequences of length m drawn from a
distribution D over X.

Definition 8.4 – Rademacher Complexity. Let D be a distribution over
X and let G be a family of functions mapping X → [a, b]. For any integer,
m ≥ 1, the Rademacher complexity of G, is the expectation of the empirical
Rademacher complexity of G over samples of size m drawn independently from
D, i.e.

RADm(G) = E
S∼Dm

[
R̂ADS(G)

]
.

To be more precise, we should write RADm(G;D) as the Rademacher Complexity
depends on the distribution. When the distribution is clear from context, we
will ignore this to simplify notation.

8.3.2 Uniform Convergence Results
Our main results in this section, concern understanding the behaviour of Φ(S)
in expectation and probability. It will be helpful to introduce some shorthand
notation. We will use E

D
[g] to mean E

z∼D

[
g(z)

]
and we will use,

ÊS [g] = 1
m

m∑
i=1

g(zi),

6We will ignore issues of measurability; this will not be a matter of concern for the
function classes we study in this course.

8.3. RADEMACHER COMPLEXITY 81

where S = (z1, . . . , zm) is a sample.
We will now prove the following result.

Lemma 8.5 – Symmetrization. Let G be a class of functions from X to
[a, b] and let D be a distribution over X. Let S = (z1, . . . , zm) ∼ Dm, then for,

Φ(S) = Φ(z1, . . . , zm) = sup
g∈G

 E
z∼D

[
g(z)

]
− 1
m

m∑
i=1

g(zi)

 ,

we have,

E
S

[
Φ(S)

]
≤ 2RADm(G).

Proof. We have

E
S

[
Φ(S)

]
= E

S

[
sup
g∈G

{
E
D

[g]− ÊS [g]
}]

.

We can rewrite E
D

[g] = E
S′

[
ÊS′ [g]

]
where S′ ∼ Dm is independent of S. Thence,

E
S

[
Φ(S)

]
= E

S

[
sup
g∈G

{
E
S′

[
ÊS′ [g]

]
− ÊS [g]

}]

≤ E
S,S′

[
sup
g∈G

{
ÊS′ [g]− ÊS [g]

}]
(8.8)

= E
S,S′

sup
g∈G

 1
m

m∑
i=1

(
g(z′i)− g(zi)

)
 .

In (8.8), we obtain the inequality by pushing the sup inside the expectation.
We can now use the fact that S and S′ are independent and identically redistributed
to rewrite the RHS above. In particular, we can thinking of obtaining

(z1, . . . , zm, z′1, . . . , z′m) ∼ D2m,

but then deciding to put either zi or z′i in S and the other in S′ uniformly at
random. Clearly this doesn’t change the expectation. So we can introduce the
Rademacher random variables σ = (σ1, . . . , σm) to indicate this choices. We
have,

E
S

[
Φ(S)

]
≤ E
S,S′,σ

sup
g∈G

 1
m

m∑
i=1

σi(g(z′i)− g(zi))

≤ E
S′,σ

∑
g∈G

1
m

m∑
i=1

σig(z′i)

+ E
S,σ

∑
g∈G

1
m

m∑
i=1

σig(zi)

= 2RADm(G).

82 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

Above, we used the fact that σ and −σ are identically distributed, that
S and S′ are also identically distributed, and the definition of Rademacher
complexity.

We can see how the symmetrization using Rademacher random variables
leads to terms in the above proof leads to terms that motivate the definition of
Rademacher complexity. Thus, the formal reason for defining the Rademacher
complexity the way we have is that it gives us an upper bound on E

S

[
Φ(S)

]
.

In order to bound Φ(S) in probability, we will use McDiarmid’s inequality,
which we state below without proof. A proof can be found in the lecture notes
by Bartlett.7

Theorem 8.6 – McDiarmid’s Inequality. Let X be some set and let f :
Xm → R be a function such that for all i, there exists ci > 0, such that for all
z1, z2, . . . , zm, z′i, the following holds:∣∣f(z1, . . . , zi−1, zi, zi+1, . . . , zm)− f(z1, . . . , zi−1, z′i, zi+1, . . . , zm)

∣∣ ≤ ci
Let Z1, Z2, . . . , Zm be independent random variables taking values in X . Then,
for every ε > 0, the following holds:

P
[
f(Z1, . . . , Zm) ≥ E

[
f(Z1, . . . , Zm)

]
+ ε
]
≤ exp

(
− 2ε2∑m

i=1 c
2
i

)
McDiarmid’s inequality is a generalisation of Hoeffding’s inequality. For

instance, if X = [a, b], using f(z1, . . . , zm) = 1
m

∑m
i=1 zi and ci = (b−a)/m, we

obtain Hoeffding’s inequality. McDiarmid’s inequality shows that as long as no
single variable has significant influence over the function f , then the random
variable f(Z1, . . . , Zm) is concentrated around its expectation.

We can now prove the following lemma.

Lemma 8.7. Consider the same setting as Lemma 8.5. Let G be a class
of functions from X to [a, b] and let D be a distribution over X. Let S =
(z1, . . . , zm) ∼ Dm, then for,

Φ(S) = Φ(z1, . . . , zm) = sup
g∈G

 E
z∼D

[
g(z)

]
− 1
m

m∑
i=1

g(zi)

 ,

the following holds with probability at least 1− δ,

Φ(S) ≤ 2RADm(G) + (b− a) ·

√
log 1

δ

2m .

Proof. For some i ∈ [m], let S′ be obtained by replacing zi by z′i for some
z′i ∈ X. We have,

Φ(S)− Φ(S′) = sup
g∈G

(
E
D

[g]− ÊS [g]
)
− sup
g∈G

(
E
D

[
g)
]
− ÊS′ [g]

)
≤ 1
m

sup
g∈G

(g(zi)− g(z′i)) ≤
b− a
m

7Lecture notes available at https://people.eecs.berkeley.edu/~bartlett/courses/
281b-sp08/13.pdf.

https://people.eecs.berkeley.edu/~bartlett/courses/281b-sp08/13.pdf
https://people.eecs.berkeley.edu/~bartlett/courses/281b-sp08/13.pdf

8.3. RADEMACHER COMPLEXITY 83

Above, we used the fact that the difference of suprema can be upper bounded
by the suprema of the difference, and that since both g(zi), g(z′) ∈ [a, b], their
difference is bounded by (b − a). Since S and S′ are symmetric, we can get
the same bound for Φ(S′)−Φ(S). Thus, we can apply McDiarmid’s inequality
(Theorem 8.6) with ci = (b− a)/m for all i. Thus, we have,

P
[
Φ(S) ≥ 2RADm(G) + ε

]
≤ P

[
Φ(S) ≥ E

[
Φ(S)

]
+ ε
]
≤ exp(−2mε2/(b− a)2).

The result then follows by setting ε = (b− a) ·
√

log 1
δ

2m .

We can of course define a function Ψ, which is like Φ, but with the quantity
inside the supremum negated, i.e.

Ψ(S) = sup
g∈G

 1
m

m∑
i=1

g(zi)− E
z∼D

[
g(z)

] ,

and prove the equivalents of Lemmas 8.5 and 8.7. Thus, combining all this we
can prove the following theorem.

Theorem 8.8. Let G be a family of functions mapping X → [a, b] and let D
be a distribuion over X. Let S = (z1, . . . , zm) ∼ Dm be a sample of size m
drawn according to D. Then for any δ > 0, with probability at least 1− δ, the
following holds for all g ∈ G,∣∣∣∣∣∣ E

z∼D

[
g(z)

]
− 1
m

m∑
i=1

g(zi)

∣∣∣∣∣∣ ≤ 2RADm(G) +

√
log 2

δ

2m .

The above theorem combined with the algorithm design paradigm in Section 8.1.3
shows that provided we find a minimizer of the empirical risk from a suitable
class of functions, then we are guaranteed to have low true risk. Actually, if
the algorithm outputs some function h from some class H of functions, and the
loss function is `, then we consider the class,

G = {(x, y) 7→ `(h(x), y) | h ∈ H},

and it is RADm(G) that we are interested in bounding. We will see how to
apply Theorem 8.8 in the remaining sections of this chapter. However, first we
will see some composition results concerning Rademacher Complexity that will
be useful in deriving bounds on the Rademacher complexity of function classes
of interest.

8.3.3 Composition Properties for Rademacher Complexity
We note (and prove) some results that indicate how the Rademacher complexity
is affected by simple transformations to function classes.

Lemma 8.9. Let X be some set and S = (z1, . . . , zm) ∈ Xm. Let F ,G be
classes of functions from X to some bounded interval [a, b]. Let c, v ∈ R. The
following hold:

84 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

• Define the class F + G as,

F + G = {f + g | f ∈ F , g ∈ G},

and note that the range of functions in F + G is contained in [2a, 2b].
Then,

R̂ADS(F + G) = R̂ADS(F) + R̂ADS(G).

• Define the class cF + v as,

cF + v = {cf + v | f ∈ F},

and note that the range of functions in cF+v is contained in [−u+v, u+v]
where u = |c|max{|a|, |b|}. Then,

R̂ADS(cF + v) = |c|R̂ADS(F).

The proof of the above lemma is straightforward and is left as an exercise.
Let us now see a result that will be quite useful. The following lemma is
usually referred to as Talagrand’s (Contraction) Lemma in the learning theory
literature, as it follows from a much more general theory developed by Talagrand.

Lemma 8.10 – Talagrand’s Lemma. Let G be a family of functions from
X → [a, b] and let S = (z1, . . . , zm) ∈ Xm. Let φ1, . . . , φm be univariate
real-valued functions, for each i, φi : [a, b]→ R being l-Lipschitz. Then,

E
σ

sup
g∈G

1
m

m∑
i=1

σiφi(g(zi))

 ≤ l · R̂ADS(G).

We will provide a proof of this lemma, though readers may well skip this
proof without hurting their understanding the applications of this lemma.
Before we do that, let us observe the following immediate corollary, which
immediately follows from setting each φi to be the same in the above lemma.

Corollary 8.11. Let G be a family of functions from X → [a, b], let φ :
[a, b]→ R be l-Lipschitz. Then define the class,

φ ◦ G = {φ ◦ g | g ∈ G}.

Then, for any S ∈ Xm, R̂ADS(φ ◦ G) ≤ R̂ADS(G).

Proof of Lemma 8.10. We have the following:

1
m
· E

σ

sup
g∈G

m∑
i=1

σiφig(zi)

 = 1
m
· E
σ1,...,σm−1

E
σm

[
sup
g∈G

um−1(g) + σmφm(g(zi))
]
,

where um−1(g) =
m−1∑
i=1

σiφi(g(zi)). Let us concentrate on just the inner expectation:

E
σm

[
sup
g∈G

um−1(g) + σmφmg(zm))
]
.

8.4. LINEAR REGRESSION 85

Note that by definition of supremum, we have the existence of g1, g2 ∈ G
satisfying the following for every ε > 0:

um−1(g1) + φm(g1(zm)) ≥ sup
g∈G

(
um−1(g) + φm(g(zm))

)
− ε (8.9)

um−1(g2)− φm(g2(zm)) ≥ sup
g∈G

(
um−1(g)− φm(g(zm))

)
− ε (8.10)

Then, we have the following for every ε > 0:

E
σm

[
sup
g∈G

um−1(g) + σmφm(g(zm))
]
− ε ≤ 1

2
[
um−1(g1) + φm(g1(zm))

+um−1(g2)− φm(g2(zm))
]

As φm is l-Lipschitz, we have |φm(g1(zm)) − φm(g2(zm))| ≤ l · |g1(zm) −
g2(zm)| = ls(g1(zm) − g2(zm)), where s = sign(g1(zm) − g2(zm)). Thus, we
have

E
σm

[
sup
g∈G

um−1(g) + σmφm(g(zm))
]
− ε ≤ 1

2
[
um−1(g1) + um−1(g2) + ls(g1(zm)− g2(zm))

]
= 1

2
[
um−1(g1) + lsg1(zm) + um−1(g2)− lsg2(zm)

]
As {s,−s} = {−1, 1}, we can rewrite the above as:

E
σm

[
sup
g∈G

um−1(g) + σmφm(g(zm))
]
− ε ≤ E

σm

[
sup
g∈G

um−1(g) + σmlg(zm)
]

As this inequality holds for every ε > 0, we can in fact write,

E
σm

[
sup
g∈G

um−1(g) + σmφm(g(zm))
]
≤ E
σm

[
sup
g∈G

um−1(g) + σmlg(zm)
]

We can repeat the above for i = m− 1,m− 2, . . . , 1, to show that,

E
σ

sup
g∈G

1
m

m∑
i=1

σiφi(g(zi))

 ≤ l · E
σ

sup
g∈G

1
m

m∑
i=1

σig(zi)

 = l · R̂ADS(G)

In the following sections, we will see some examples of how these composition
lemmas together with Theorem 8.8 can be used to give guarantees on either
ε(h) or R(h)− inff∈F R(f) for learning algorithms derived using the paradigm
outlined in Section 8.1.3.

8.4 Linear Regression

Let us look one of the most well-studied problem in statistics and machine
learning—linear regression. In linear regression, we assume that the target

86 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

function, f?, is of the form f?(x) = w? · x for w? ∈ Rn. The goal is to
estimate, f̂ , represented by parameters ŵ, such that,

ε(f̂) = E
z∼µ

[
(w? · x− ŵ? · x)2

]
≤ ε.

Both in order to apply, Theorem 8.2 and Theorem 8.8, we will require some
boundedness assumptions. We shall assume that there exists some W , such
that ‖w?‖2 ≤ W . For some R ≥ 0, let Bn(0, R) = {x ∈ Rn | ‖x‖2 ≤ R}. We
will assume that the support of D is contined in Bn(0, B)× [−M,M] for some
B,M > 0.

For any w ∈ Rn, let fw : Bn(0, B) → R be the linear function defined
as fw(x) = w · x. Consider the class of linear functions from Bn(0, B) →
[−BW,BW] defined as,

FW,B = {fw | ‖w‖2 ≤W}.

Note that using the Cauchy-Schwarz inequality, |x ·w| ≤ ‖x‖2 ‖w‖2 ≤ BW , so
the range of these functions is indeed contained in [−BW,BW] as stated.

8.4.1 The Least Squares Approach
Let S = {(x1, y1), . . . , (xm, ym)} denote the observed training data sample.
Let `(ŷ, y) = (ŷ − y)2. The ERM approach suggests that we should obtain ŵ
by minimising the empirical risk, R̂S(f) over f ∈ FW,B .

By slight abuse of notation, we can view the empirical risk direction as a
function of the parameters w,

R̂S(w) = 1
m

m∑
i=1

(w · xi − yi)2.

Then, if we define K = {w ∈ Rn | ‖w‖2 ≤ W}, we are solving the following
optimization problem,

min
w∈K

R̂S(w).

For x, y, define the function, r : Rn → R, r(w; x, y) = (w · x − y)2. Thus,
R̂S(w) = 1

m

∑m
i=1 r(w; xi, yi). We note that, ∇wr(w; x, y) = 2(w ·x−y)x and

the Hessian H(r) = 2xx> � 0 is positive semi-definite. Thus, the function
R̂S is a convex function of w. Furthermore, since

∥∥∇wr(w; x, y)
∥∥

2 ≤ |2(w ·
x − y)| ‖x‖2, under the boundedness conditions above, and using the Cauchy
Schwarz inequality, we have

∥∥∥∇wR̂S(w)
∥∥∥

2
≤ 2(BW + M)B. Clearly, for any

w,w′ ∈ K, we have
∥∥w−w′

∥∥
2 ≤ 2W . Thus, we can apply Theorem 8.2 and

by choosing T to be Θ
(

(BW+M)BW
ε2

)
, we can obtain ŵ ∈ K such that,

R̂S(ŵ) ≤ min
w∈K

R̂S(w) + ε.

It is worth pointing out that without constraining the solution to lie in
K, there is a simple closed form solution to obtain a minimizer of R̂S(w).8

8The constrained problem is closely related to ridge regression which also has a closed
form solution.

8.4. LINEAR REGRESSION 87

However, in certain cases gradient-based approaches might be preferable in any
case, as the closed-form solution requires inverting matrices which is computationally
expensive.

8.4.2 Rademacher Complexity for Linear Functions
Let us now compute the empirical Rademacher complexity for the class FW,B
defined above. For this purpose, let X = Bn(0, B) and let S = (x1, . . . ,xm) ∈
Xm. We have,

R̂ADS(FW,B) = E
σ

 sup
w∈Bn(0,W)

1
m

m∑
i=1

σi(w · xi)

= E

σ

 sup
w∈Bn(0,W)

w · 1
m

m∑
i=1

σixi

 .

Using the Cauchy-Schwartz Inequality (the equality case),

R̂ADS(FW,B) = W · E
σ

∥∥∥∥∥∥ 1
m

m∑
i=1

σixi

∥∥∥∥∥∥
2

Using Jensen’s Inequality,

R̂ADS(FW,B) ≤W ·

E
σ

∥∥∥∥∥∥ 1
m

m∑
i=1

σixi

∥∥∥∥∥∥
2

2

1
2

= W ·

E
σ

 1
m2

m∑
i=1
‖xi‖22 + 2

m2

∑
i<j

σiσj(xi · xj)

1
2

.

As σi are i.i.d. and have mean 0, the cross terms are all 0. Using the bound
‖xi‖2 ≤ B, we get,

R̂ADS(FW,B) ≤ W ·B√
m

.

Let us now see how we can apply the composition results from Section 8.3.3
to bound the Rademacher Complexity of classes of functions that also incorporate
the loss. Let F be a family of functions from Xn to [a, b] and furthermore
suppose that for every x ∈ Xn, ‖x‖2 ≤ B. Let X = Xn × [−1, 1] and let
S = (z1, . . . , zm) ∈ Xn, where each zi = (xi, yi). Let S = (x1, . . . ,xm) ∈ Xm

n

denote the sequence obtained from S by ignoring the observations yi.
Define the class of functions that map X to [a−M, b+M],

F1 = {(x, y) 7→ f(x)− y | f ∈ F}.

88 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

An easy calculation shows that the Rademacher complexity, R̂ADS(F1) =
R̂ADS(F). Alternatively, we may appeal to the first part of Lemma 8.9 by using
the class G that contains only 1 function, (x, y) 7→ y. Clearly R̂ADS(G) = 0.

Now consider the class of functions that map X to [0, α2], where α =
max |a−M |, |b+M |], defined as,

F` = {(x, y) 7→ (f(x)− y)2 | f ∈ F}.

Alternatively, we can view F` as,

F` = {(x, y) 7→ φ ◦ h(x, y) | h ∈ F1},

where φ : [−α, α] → R is the square function, φ(z) = z2. We note that as
φ′(z) = 2z, φ is 2α-Lipschitz on the interval [−α, α]. Thus, using Lemma 8.10,
we have,

R̂ADS(F`) ≤ 2αR̂ADS(F1) = 2αR̂ADS(F).

In the case of linear functions, let F`W,B denote the correponding class
obtained when starting from the class FW,B . Note that if f ∈ FW,B corresponds
to some function, h ∈ F`W,B , i.e. h(x, y) = (f(x)− y)2, then,

E
(x,y)∼D

[
h(x, y)

]
= E

(x,y)∼D

[
(f(x)− y)2

]
= R(f).

In the case of linear functions, we have that,

R̂ADS(F`W,B) ≤ 2(BW +M) · BW√
m
.

Thus, applying Theorem 8.8, we get that providedm = Θ
(
BW (BW+M)+log 1

δ

ε2

)
,

then with probability at least 1−δ, ŵ obtained from the optimization problem
above would guarantee,

R(ŵ) ≤ min
w∈Bn(0,W)

R(w) +O(ε).

This completes the analysis in the case of Linear Regression.

8.5 Generalised Linear Models

Let us now look at a more expressive class of functions. In the statistics
literature, these are referred to as generalised linear models. These are models
of the form, g(x) = u(w · x), where x ∈ Rn, w ∈ Rn and u : R → R. It is
common to assume that u is monotone and Lipschitz, however these models
can be defined more broadly. Supose that u is strictly monotone, so that u−1

is well-defined. Then although g is no longer a linear function of x, u−1(g(x))
is linear. The function u−1 is referred to as the link function.

Generalised linear models are widely used in machine learning and also
form the basis of a single unit in most neural networks. Note that units with a
sigmoid, hyperbolic tangent, or rectifier activation functions, are all generalised
linear models.

8.5. GENERALISED LINEAR MODELS 89

In what follows we’ll assume that u is monotonically increasing (not necessarily
strict) and 1-Lipschitz, i.e. |u(z) − u(z′)| ≤ |z − z′| for all z, z′ ∈ R. We will
also assume that u is known to the learning algorithm. We will assume that
the instance space is Xn = Bn(0, B) for B > 0, and for W > 0 consider the
class of generalised linear models, of functions from Xn → R:

GW,B,u = {x 7→ u(w · x) | w ∈ Bn(0,W)}

Note that as we are allowing W to be an arbitrary parameter, the requirement
u is 1-Lipschitz is not an extra restrictions beyond just Lipschitzness. For
example, if u were l-Lipschitz, we can use some ũ, where ũ(z) = u(z/l) is
1-Lipschitz, and instead allow ‖w‖2 to be as large as Wl.

For simplicity we’ll assume that u(0) = 0 (although, this is not the case for
some functions, we can easily centre u for the purpose of the algorithm and
then undo the centering at the time of prediction). As in the previous section,
suppose that the distribution D has support contained in X = Xn × [−M,M]
for some M ≥ BW . Then, observe that as |w · x| ≤ BW for all w ∈ Bn(0,W)
and x ∈ Xn, and since u is 1-Lipschitz, there it is possible for the distribution
to satisfy the condition that E

[
y|x
]

= u(w? · x) for some w? ∈ Bn(0,W). For
the rest of the analysis in the section, we shall assume that this is the case, i.e.
we are in the realizable setting.

8.5.1 Empirical Risk Minimisation
As in the case of linear regression, we can attempt to find a minimiser of
the empirical risk, defined, with slight abuse of notation, on a sample S =
{(x1, y1), . . . , (xm, ym)}, as,

R̂S(w) = 1
m

m∑
i=1

(u(w · xi)− yi)2.

The trouble is that unlike in the case of linear regression, the empirical risk is
no longer a convex function of w. In fact, it has been shown by Auer et al.
[8] that for even relatively simple inverse link functions, such as the sigmoid,
u(z) = 1

1+e−z , the empirical risk may have exponentially many local minima
as a function of the dimension.

Surrogate Loss Function

In order to avoid optimising a non-convex function (for which there are no
general purpose algorithms), we’ll use a strategy often employed in machine
learning—using a surrogate convex loss function. Remarkably, in the case of
generalised linear models, there exists a surrogate loss function, such that,
in the realizable setting, the expected risk minimiser for this surrogate loss
function and that for the squared loss is exactly the same! In addition, we
can also show that an approximate minimiser of the risk for the surrogate loss
function is also an approximate minimiser of the risk for squared loss.

Technically, the function we define is not strictly a loss function as we
defined in this chapter. However, if u is strictly monotone, then we can by
translation make it satisfy the conditions required for a loss function. Instead,
we will directly define the function, r(w; x, y) which will define a penalty term

90 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

for using the vector w on the datapoint (x, y). Formally, for x ∈ Bn(0, B), y ∈
[−M,M], and for w ∈ Bn(0,W), define

r(w; x, y) =
∫ w·x

0
(u(z)− y)dz.

We will define the empirical risk of the surrogate loss as,

R̂rS(w) = 1
m

m∑
i=1

r(w; xi, yi)

It is useful to compute the gradient and Hessian of r(w; x, y). Note that we
have,

∇wr(w; x, y) = (u(w · x)− y)x,
H(r) = u′(w · x)xx>.

Since u is monotonically increasing, u′(z) ≥ 0 for all z. What this shows is
that r(w; x, y) is a convex function for every x, y. Since R̂rS is an average
of r(w; xi, yi), R̂rS is also convex and so we can apply convex optimization
algorithms to find the approximate minimiser of R̂rS .

Let us write down the gradient of R̂rS(w),

∇wR̂
r
S(w) = 1

m

m∑
i=1
∇wr(w; xi, yi) = 1

m

m∑
i=1

(u(w · x)− yi)xi.

For comparison, let us also write the gradient of the empirical risk for the
squared loss, R̂S(w),

∇wR̂S(w) = 2
m

m∑
i=1

(u(w · xi)− yi)u′(w · xi)xi.

Notice that apart from the factor 2, the main difference is that the ith example
has u′(w · xi) as a multiplicative factor in the gradient. Although, u′ ≥ 0 as u
is monotonically increasing, it may at times be very small.9

Next, let us also show that w?, a minimiser of R(w) is also a minimizer of
Rr(w), which is defined as,

Rr(w) = E
(x,y)∼D

[
r(w; x, y)

]
.

Let w? ∈ Rn be used to define the target function, i.e. it is the case that
E
[
y|x
]

= u(w? ·x). Eq. (8.2) shows that w? is a minimiser of R(w). Consider

9For instance, when u is the sigmoid function u′(z) ≈ 0 when |z| is somewhat large. This
is also the reason why cross-entropy loss is better than squared loss for avoiding the vanishing
gradient problem.

8.5. GENERALISED LINEAR MODELS 91

the following for any x ∈ Bn(0, B):

E
[
r(w; x, y)|x

]
− E

[
r(w?; x, y)|x

]
= E

[∫ w·x

w?·x
(u(z)− y)dz|x

]
=
∫ w·x

w?·x

(
u(z)− E

[
y|x
])
dz

=
∫ w·x

w?·x
(u(z)− u(w? · x))dz

≥ 1
2(u(w · x)− u(w? · x))2

The last inequality in the calculation above follows from the fact that u is
monotonically increasing and 1-Lipschitz. We can take expectations with
respect to x to get,

Rr(w)−Rr(w?) ≥ 1
2 E

x∼µ

[
(u(w · x)− u(w? · x)2

]
= ε(w).

This shows that Rr(w) ≥ Rr(w?), i.e. w? is a minimiser of Rr(w). with
respect to the surrogate loss function `.

This shows that it is sufficient to identify a ŵ, for which Rr(w) is at most
ε
2 larger than that of Rr(w?). In order to find a good enough minimizer of
the empirical quantity, R̂rS(w), it is sufficient to perform roughly Θ

(
WBM
ε2

)
projected gradient steps. We will see below how to use Rademacher complexity
bounds to give bounds on |Rr(w) − R̂rS(w)| for all w ∈ Bn(0,W) with high
probability.

Bounding the Generalisation Error for learning GLMs

Let us now consider the surrogate loss function, r(w; x, y), used for learning
GLMs. We can write r(w; x, y) as follows:

r(w; x, y) =
∫ w·x

0
(u(z)− y)dz =

(∫ w·x

0
u(z)dz

)
− y(w · x)

Thus, we can write r(w; x, y) = ψ(w ·x)−y(w ·x)), where ψ is a BW -Lipschitz
function. function.

Recall that Xn = Bn(0, B) and the following classes of functions from
Xn × [−M,M]→ R:

Gr,W = {(x, y) 7→ r(w; x, y) | w ∈ B(0,W)}
G1
r,W = {(x, y) 7→ ψ(w · x) | w ∈ Bn(0,W)}
G2
r,W = {(x, y) 7→ −y(w · x) | w ∈ Bn(0,W)}

Let S = {(x1, y1), . . . , (xm, ym)} ⊆ Xn × [−M,M]. and let S = {x1, . . . , xm}.
First, observer that

Gr,W ⊆ G1
r,W + G2

r,W .

Thus, it suffices to bound R̂ADS(Gir,W) for i = 1, 2 and use Lemma 8.9.

92 CHAPTER 8. LEARNING REAL-VALUED FUNCTIONS

We know that if consider the class of functions over Xn× [−M,M] of linear
functions,

GW = {(x, y) 7→ w · x | w ∈ Bn(0,W)},

then R̂ADS(GW) ≤ BW√
m
. Then, by applying Corollary 8.11, and using the fact

that ψ is BW Lipschitz, we get

R̂ADS(G1
r,W) ≤ (BW)2

√
m

.

For, G2
r,W , we let ψi(z) = −yiz and observe that when |yi| ≤M , each ψi is

M -Lipschitz. We can then apply Lemma 8.10 to obtain that

R̂ADS(G2
r,W) ≤ BWM√

m
.

Putting everything together, we get that,

R̂ADS(Gr,W) ≤ BW (BW +M)√
m

.

Using Theorem 8.8 and Theorem 8.2, this shows that the class of generalised
linear models GW,u can be learnt with running time polynomial inW , B,M , n,
1
ε and 1

δ and with sample complexity polynomial in B, W , M , 1
ε and 1

δ . Notice
that there is no direct dependence on n in the sample complexity; it may appear
implicitly through B and W . An advantage of this lack of dependence on n is
that, provided B and W can be suitably bounded these models and algorithms
can be kernelised.

Chapter 9

Mistake-Bounded Learning

Thus far we’ve mainly looked at settings where there is an underlying distribution
over the data and we are given access to an oracle that provides random
examples from this distribution. While this framework provides a useful way to
analyse the behaviour of learning algorithms, it is not always the case that one
may get independent training examples in practice. In reality, the distribution
from which the data is generated may change over time. In this chapter, we
will look at a specific learning framework that removes the requirement that
data comes from a fixed distribution as (stochastically) independent examples.

9.1 Online Prediction Framework

We consider the setting where the learning algorithm is interacting with an
environment and has to make predictions at discrete time-steps. Let X be an
instance space and C a class of concepts.1 The setup is as follows:

(a) At time t, the learning algorithm is presented an instance xt ∈ X.

(b) The learning algorithm makes a prediction ŷt ∈ {0, 1}.

(c) The true label yt is revealed and the learning algorithm is said to have
made a mistake if ŷt 6= yt.

The process defined above repeats indefinitely for t = 1, 2, How might
one measure the performance of such a learning algorithm? For a learning
algorithm L and infinite sequence ((xi, yi))∞i=1, for time t ∈ N, define,

MISTAKES
(
t;L, ((xi, yi))∞i=1

)
=

t∑
s=1

1(ŷs 6= ys).

In the process defined above, the access L gets to the data ((xi, yi))∞i=1
is sequential, where it has to make a prediction ŷt before seeing yt. We will
only consider sequences ((xi, yi))∞i=1 for which there exists c ∈ C, such that

1We will forgo the slightly cumbersome notational overhead of writing X =
⋃
n≥1 Xn

and C =
⋃
n≥1 Cn and implicitly assume that there is a parameter n that captures the size

of instances. Likewise, we assume that there is a function size(c) that gives the representation
size of concepts.

93

94 CHAPTER 9. MISTAKE-BOUNDED LEARNING

Algorithm 9.1:Mistake-bounded algorithm for learning conjunctions

1 Input: Sequence ((xi, yi))∞i=1 provided online.
2 // initialize hypothesis conjunction with all literals
3 Set h1 = z1 ∧ z1 ∧ z2 ∧ z2 ∧ · · · ∧ zn ∧ zn
4 for t = 1, 2, 3, . . . do
5 Receive xt
6 ŷt = ht(xt)
7 Receive yt
8 if yt 6= ŷt then // mistake made
9 for j = 1, . . . n do

10 if xt,j = 0 then // jth bit of xt is 0
11 Drop zj from ht if it exists
12 else // jth bit of xt is 1
13 Drop zj from ht if it exists
14 Call the resulting hypothesis ht+1

yi = c(xi) for all i. We will say that C is learnable with a finite mistake
bound B, if there exists an online learning algorithm L, that for every sequence
((xi, yi))∞i=1 that satisfies for some c ∈ C that for all i, yi = c(xi), satisfies for
all t ∈ N, MISTAKES(t;L, ((xi, yi))∞i=1) ≤ B.

It is worth making a couple of observations at this point. If X is finite and
there is no restriction on the computational resources available to L, one can
always trivially get a mistake bound of |X|. We will typically be interested in
algorithms that are efficient in their use of space and time. We will define the
notion of efficiency later, but first let us consider an example. We will design an
algorithm for online learning CONJUNCTIONS in the mistake-bounded setting.
The Algorithm is shown given in Alg. 9.1.

Theorem 9.1. CONJUNCTIONS can be learnt online with mistake-bound n+
1. Furthermore, the running time of the algorithm is polynomial in n at each
time t.

Proof. First observe that because we start with all literals in the hypothesis
conjunction and only drop literals where we are sure that the literal can’t be
part of the target conjunction, the only mistakes we make are of the form yt = 1
and ŷt = 0.

To begin, h1 has 2n literals. When the first mistake occurs, exactly n literals
are removed: for each i, exactly one of zi or zi is dropped. At every subsequent
mistake at least one literal is dropped. Thus, the number of mistakes cannot
exceed n+ 1.

Finally, note that the algorithm is only maintaining a hypothesis conjunction
and using it to make the prediction ŷt. So the running time of the algorithm
at each time-step is O(n).

Exercise: Show that the above bound is tight for this particular algorithm.
What can you say about a general mistake bound for any algorithm for online
learning CONJUNCTIONS?

9.1. ONLINE PREDICTION FRAMEWORK 95

9.1.1 Resource Constraints on Online Algorithms
In the most generous setting, we can allow the algorithm L to predict ŷt using
any computable function of (x1, y1,x2, y2, . . . ,xt−1, yt−1,xt). For computationally
efficient algorithms, we may require that this function be computable in time
polynomial in n, size(c) and t. However, as we observed in the algorithm
for learning CONJUNCTIONS, the algorithm did not need to store the entire
history of observations, but the current hypothesis ht was sufficient as a sketch
of the history up to that point.

We consider space-bounded algorithms, where at time t, the algorithm
maintains a state St, such that for each t, |St| ≤ poly(n, size(c)). For an efficient
algorithm, we will require that there are two polynomial time computable
functions f and g, such that ŷt = f(St,xt) and St+1 = g(St,xt, yt). Thus,
the function f is used to make a prediction ŷt at time t, and g is used to
update the state.

Note that the we can define ht : X → {0, 1} as ht(x) = f(St,x), thus
essentially this is equivalent to the algorithm maintaining a hypothesis at each
time t. Furthermore, because of the requirement that |St| ≤ poly(n, size(c)),
the total number of possible hypothesis is at most 2poly(n,size(c)), thus the
algorithm in this case is making predictions using a hypothesis that comes
from a fairly restricted class of hypotheses. We will refer to such algorithms as
efficient online algorithms.

9.1.2 Conservative Online Learning
Definition 9.2 – Conservative Online Learner. We say that an online
learning algorithm is conservative, if it only changes its prediction rule after
making a mistake. Equivalently it only updates its state if it makes a mistake.

Proposition 9.3. If C is learnable with a mistake bound B using an online
learning algorithm A, then C is learnable with mistake bound B using a conservative
online learning algorithm. The conservative online learning algorithm is efficient
if A is efficient.

Proof. The proof of this result is relatively straightforward. We design an
algorithm A′ as follows. A′ initialises itself exactly the same way as A does.
Let S′t be the state of the A′ at time t and let m(t) denote the number of
mistakes made by A′ up to (but no including) time t. We will simulate A on
a subsequence of examples on which A′ makes mistakes. We will maintain the
invariant that S′t = Sm(t)+1. Note that by definition S′1 = S1.

A′ behaves as follows. If there is no mistake at time t, then S′t+1 = S′t.
If on the other hand a mistake is made, then we pass the example xt to
the simulation of A and set S′t+1 = Sm(t+1)+1. Clearly A′ is conservative
by definition. However, the prediction rule used by A′ at time t is the same as
the one used by A at time m(t) + 1; as a result every time A′ makes a mistake
so does A. Since A has a mistake bound of B, so does A′.

The requirement that an online learning algorithm be conservative is a
natural one and the above result shows that it is not a restrictive one. This
result will be useful to establish that efficient mistake-bounded online learning
implies PAC learning.

96 CHAPTER 9. MISTAKE-BOUNDED LEARNING

9.2 Relationships to Other Models of Learning

In the PAC learning framework, we have access to an example oracle EX(c,D)
that when queried returns an example (x, c(x)) where x ∼ D. Earlier in
the course, we also considered two other oracles, a membership query oracle,
MQ(c), which when queried with x, returns c(x), and an equivalence query
oracle, EQ(c), which when queried with a hypothesis h, either returns that
c ≡ h or returns a counterexample x, such that h(x) 6= c(x). We will now
relate mistake-bounded learning to learning using some of these other oracles.

9.2.1 Relationship to PAC Learning
Theorem 9.4. If C is efficiently learnable with a mistake bound B using an
online learning algorithm A, where B ≤ poly(n, size(c)), then C is efficiently
PAC learnable.

Proof. Without loss of generality, letA be a conservative online learning algorithm.
We generate each example (xt, yt) at time t by querying the example oracle
EX(c,D). Let ht denote the hypothesis used by A at time t. Since A is
conservative and has a mistake-bound of B, we need to consider no more than
B + 1 distinct hypotheses.

We either stop the simulation of A after B mistakes have been made and
output the hypotheses that is then guaranteed to be equal to the target c,
or we stop the simulation if we simulate s = 1

ε log B
δ steps without making a

mistake. The probability that a hypothesis, h, with err(h) ≥ ε will go for s
steps with examples drawn i.i.d from EX(c,D), without making a mistake is at
most (1− ε)s ≤ e−εs ≤ δ/B. Thus, a simple union bound suffices to show the
correctness.

We remark that the condition that B ≤ (n, size(c)) together with the
efficiency of A suffices to conclude that the resulting PAC learning algorithm
is efficient. Note that the sample complexity of the resulting algorithm is
O
(
B
ε log B

δ

)
.

Remark 9.5. If we wanted to allow non-efficient algorithms, but insist on
polynomial sample complexity and polynomial-time evaluatability of the hypothesis
class, we would still require B ≤ poly(n, size(c)) and would require that the
online learning algorithm A had a polynomial time prediction rule, even if the
state update could potentially require more than polynomial time.

9.2.2 Relationship to Learning Using Equivalence Queries
Proposition 9.6. If C is learnable with a mistake bound B using an online
algorithm A, then C can be learnt using EQ(c) only with at most B+1 equivalence
queries. Furthermore, if A is efficient so is the algorithm that learns using
EQ(c).

Proof. Let ht be the hypothesis used by A at time t for t ≥ 1. We will query
EQ(c) with ht: if we get that c ≡ ht, then we are done, otherwise we get a
counterexample xt which forces A to make a mistake at time t. In fact, this
forces A to make mistakes at every single time-step in the simulation. Thus,

9.3. THE HALVING ALGORITHM AND SOME EXAMPLES 97

Algorithm 9.2: Halving algorithm for online learning C
1 Input: Sequence ((xi, yi))∞i=1 provided online.
2 Let C1 = C
3 for t = 1, 2, 3, . . . do
4 Receive xt
5 ŷt = majority{c(xt)|c ∈ Ct}
6 Receive yt
7 if yt 6= ŷt then // mistake made
8 Ct+1 = {c ∈ Ct | c(xt) = yt}
9 else

10 Ct+1 = Ct

after B mistakes hB+1 will be identical to c. We can verify this by an additional
query to EQ(c).

Proposition 9.7. If C is learnable using only EQ(c) and makes at most Q
queries to EQ(c), then C is learnable with a mistake bound of Q using an online
algorithm. Furthermore, if the algorithm that learns using EQ(c) is efficient,
then so is the online algorithm.

Proof. Let L be the learning algorithm that only uses EQ(c). At any point in its
simulation when it is about to make an equivalence query, it has a hypothesis
h, we will use h to make predictions in the online setting. If we make a mistake,
we have successfully simulated the oracle EQ(c) to get a counterexample. After
Q such misakes L has a hypothesis h that is equivalent to c and will make no
further mistakes. Thus, the mistake bound is Q.

Theorem 9.4 also follows using Proposition 9.6 and an exercise previously
seen that simulates an equivalence oracle using EX(c,D). The results in these
sections show that online learning with a finite mistake bound is at least as
hard as PAC learning. In fact it can be shown that it is strictly harder in
that for the class of linear threshold functions in general we cannot get a finite
mistake bound. We will discuss this point further in Section 9.4. We will
study the Perceptron algorithm in Section 9.4 that gives a finite mistake bound
for learning linear threshold functions with a margin. In Section 9.5, we will
study an algorithm that learns sparse disjunctions with a significantly improved
mistake-bound than can be achieved directly using the Perceptron algorithm.

9.3 The Halving Algorithm and Some Examples

In this section, we will see some information-theoretic bounds for mistake-
bounded online learning algorithms. We will not be concerned with computational
efficiency but see how these compare to other notions such as the VC dimension.

Theorem 9.8. For any finite concept class C over an instance space X, the
Halving algorithm (Alg. 9.2) has a mistake bound of log |C|.

Proof. The proof is immediate. If there is a mistake at time t, then |Ct+1| ≤
|Ct|/2. Thus, after log2 |C| mistakes, we can have at most one concept left,
which must be the target concept.

98 CHAPTER 9. MISTAKE-BOUNDED LEARNING

It is also straightforward to see that VCD(C) is a lower bound for any
achievable mistake bound for deterministic algorithms, as we can give any
learning algorithm points from a shattered set and force it to make a mistake
on every one of them. We do know that for finite C, VCD(C) ≤ log |C|. We
will now see some examples where the gap between VCD(C) and log |C| is large
and show that it is possible for the mistake bound to lie at either end of this
interval.

Dictators
Let X = {e1, . . . , en} be the instance space where ei is the ith basis vector
which has 1 in the ith co-ordinate and 0 everywhere else. Let C be the class
of dictator functions C = {c1, . . . , cn}, where ci(x) = xi, i.e. the output of ci
is simply the ith bit of x regardless of the remaining bits.2 In this case, the
mistake bound of the Halving Algorithm is 1, as is the VCD(C); obviously in
this case log |C| = logn. As an exercise, you can show that if X = {0, 1}n,
then the mistake bound is indeed logn rather than 1.

Binary Search
Let X = {1, 2, . . . , 2n} ⊆ N. Let C be the class of half intervals defined as
C = {ci|1 ≤ i ≤ 2n}, where,

ci(x) =
{

1 if x ≥ i
0 otherwise

In this case it is easy to see that VCD(C) = 1, however the mistake-bound
for any algorithm must be Θ(logn) = Θ(log |C|).

9.4 Perceptron

The Perceptron algorithm is perhaps the most famous online learning algorithm.
It was designed by Rosenblatt [37] and the first proofs of its convergence were
given by Block [10] and Novikoff [35].

For the purpose of this section it will be convenient to treat Boolean
functions as taking values in {−1, 1} and also letting sign(0) = 1. We consider
homogenous halfspaces, or linear threshold functions passing through the origin,
characterized by w ∈ Rn. This defines a threshold function fw : Rn → {−1, 1}
as,

fw(x) =
{

1 if w · x ≥ 0
−1 otherwise

The Perceptron algorithm is given as Alg. 9.3.
Before we formally analyse the algorithm, it is worth understanding geometrically

what the algorithm is doing. Let w? be the true vector that defines the labels
2This terminology comes from social choice theory. The bits 0 and 1 can represent binary

preferences of a group of n individuals and a dicator rule essentially uses the preference of
the ith individual, ignoring the rest. Obviously, the majority rule also lies in this framework
of social choice theory.

9.4. PERCEPTRON 99

Algorithm 9.3: The Perceptron Algorithm
1 Input: Sequence ((xi, yi))∞i=1 provided online.
2 // initialize with the 0 vector
3 Set w1 = 0 ∈ Rn
4 for t = 1, 2, 3, . . . do
5 Receive xt
6 ŷt = sign(xt ·wt)
7 Receive yt
8 if yt 6= ŷt then // mistake made
9 wt+1 = wt + ytxt

10 else
11 wt+1 = wt

yt. If the algorithm makes a mistake at time t it must be the case that w? · xt
and wt · xt have opposite signs. Thus adding ytxt to wt has the effect of
rotating wt in the direction of w?. This is reasonably correct intuition, but it
is not perfectly accurate, it only does this on average as will be established by
Lemmas 9.10 and 9.11. Rather than analyse the angles between wt and w?,
it will be easier to show that the inner product between wt and w? increases
every time a mistake is made and that the length of wt doesn’t increase too
much. This means that the increase in inner product is at least in part caused
by the decrease in the angle and not merely by the increase in the length. We
state and prove the following theorem.

Theorem 9.9. Suppose ((xi, yi))∞i=1 is a sequence such that for every t, ‖xt‖2 ≤
D and there exists w? ∈ Rn with ‖w?‖2 = 1 and γ > 0, such that for every
t, yt(w? · xt) ≥ γ. Then the total number of mistakes made by the Perceptron
Algorithm (Alg. 9.3) with input sequence ((xi, yi))∞i=1 is bounded by D2/γ2.

Proof. Letmt denote the number of mistakes made by the Perceptron algorithm
up to but not including time t. Using Lemmas 9.10 and 9.11, we have the
following,

mtγ ≤ w? ·wt Lemma 9.10
≤ ‖w?‖2 ‖wt‖2 By the Cauchy-Schwarz Inequality
≤
√
mtD. Lemma 9.11

This gives that mt ≤ D2/γ2 for every t.

Lemma 9.10. Let mt denote the number of mistakes made by the Perceptron
algorithm (Alg. 9.3) up to, but not including, time t on a sequence ((xi, yi))∞i=1
satisfying the conditions of Theorem 9.9. Then,

wt ·w? ≥ γmt.

Proof. We prove this by induction. When t = 1, wt = 0 and mt = 0, so this is
clearly true.

100 CHAPTER 9. MISTAKE-BOUNDED LEARNING

Now suppose this is true for time t. If no mistake occurs at time t, then
mt+1 = mt and wt+1 = wt, so the inequality continues to hold. On the other
hand, if there is a mistake, then mt+1 = mt + 1, and we have,

wt+1 ·w? = (wt + ytxt) ·w?

≥ mtγ + yt(xt ·w?)
≥ (mt + 1)γ = mt+1γ.

This completes the proof.

Lemma 9.11. Let mt denote the number of mistakes made by the Perceptron
algorithm (Alg. 9.3) up to, but not including, time t on a sequence ((xi, yi))∞i=1
satisfying the conditions of Theorem 9.9. Then,

‖wt‖22 ≤ D
2mt.

Proof. We prove this by induction. When t = 1, wt = 0 and mt = 0, so this is
clearly true.

Now suppose this is true for time t. If no mistake occurs at time t, then
mt+1 = mt and wt+1 = wt, so the inequality continues to hold. On the other
hand, if there is a mistake, then mt+1 = mt + 1, and we have,

‖wt+1‖22 = ‖wt + ytxt‖22
≤ ‖wt‖22 + ‖xt‖22 + 2ytwt · xt
≤ mtD

2 +D2

≤ (mt + 1)D2 = mt+1D
2.

Above, in the second last step, we used the fact that ‖xt‖2 ≤ D and that
yt(wt · xt) < 0 as the Perceptron algorithm made a mistake at time t. This
completes the proof.

Some Comments
Notice that for convergence, we require a margin condition: y(w? · x) ≥ γ > 0
for all points (x, y) seen by the algorithm. Clearly, the condition implies that
y has the same sign as w? · x, but it further says that the projection of x in
the direction of w? must have length at least γ (as w? is a unit vector). This
means that there is a region of width 2γ around the hyperplane {x | w? ·x = 0}
in which we do not observe any data. This is what it means to say that the
linear threshold function has a margin γ under the distribution. On Problem
3 of Sheet 6, you will essentially show a matching lower bound on the mistakes
made by the Perceptron algorithm. It is in fact possible to show that no online
algorithm can achieve a finite mistake bound without a margin condition for
learning threshold functions. This can already be seen in the one-dimensional
case by generalizing the binary search example from Section 9.3. It is worth
recalling that in the PAC setting we do have efficient algorithms for learning
linear threshold functions. Thus, this also yields a separation between PAC
learning and mistake-bounded online learning.

It is also worth comparing the updates of the Perceptron algorithm to the
algorithm we developed for learning GLMs. Note that we can consider sign :

9.5. THE WINNOW ALGORITHM 101

R→ R as a function that is monotone; it is however not Lipschitz. If we used
the same surrogate loss approach we would get update rules that are the same
as the one used by Perceptron (up to constant factors); this corresponds to
an online gradient descent approach. The margin condition allows us to use a
Lipschitz approximation of the sign function as there is no data in the region
around the boundary.

9.5 The Winnow Algorithm

We will now look at an online learning problem where the target function
depends on a relatively small number of features, but the total number of
available features is very large. The particular example we shall look at is the
class of monotone disjunctions. Let X = {0, 1}n be the instance space, for any
subset S ⊆ [n], then define the monotone disjunction,

fS(x) =
∨
i∈S

xi.

The class of monotone disjunctions is the set of all such fS , S ⊆ [n]. For any
monotone disjunction, fS , it can be expressed as a linear threshold function,

fS(x) = sign

∑
i∈S

xi −
1
2

 ,

where we map {0, 1} to {−1, 1} in order to ensure the equivalence. This
suggests that one can use the Perceptron algorithm for online learning monotone
disjunctions. There are a couple of tweaks required to make this work. First,
the way we have defined the Perceptron algorithm it only works for homogeneous
halfspaces. This is relatively easy to handle. We instead consider the instance
space to be Xn+1 and let the last bit of all examples always be 1. Then, any
threshold function of the form sign(w ·x + b) where w ∈ Rn, x ∈ Xn and b ∈ R
can be written as sign((w, b) · (x, 1)), where (w, b) ∈ Rn+1 and (x, 1) ∈ Xn+1.

Second, we need to look at target vectors having norm 1 in order to apply
Theorem 9.9. For S ⊆ [n], let w?

S ∈ Rn+1 be such that w?
i = c if i ∈ S and

w?
i = 0 for i 6∈ S and i ≤ n, and let w?

n+1 = −c/2. By setting c2 = 1/(|S|+ 1
4)

we can ensure that ‖w?‖2 = 1. Note that fS(x) = sign(w?
S ·(x, 1)) for every x ∈

Xn. Clearly, we have that
∥∥(x, 1)

∥∥2
2 ≤ n+1. And y(w?

S ·(x, 1)) ≥ c/2. Thus, we
can use γ = c/2 and D =

√
n+ 1, to get a mistake bound of 4(n+ 1)(|S|+ 1

4).
If we knew that |S| ≤ k, applying Theorem 9.4 this would give us a PAC
learning algorithm with a sample complexity O((nk/ε) log(nk/ε)). However,
using Occam’s Razor, we would expect a sample complexity of O((k logn)/ε+
log(1/δ)/ε).

We will study an online algorithm called Winnow which achieves a mistake
bound of O(k logn) for this problem. This will essentially give us a near optimal
sample complexity after applying Theorem 9.4. The online algorithm itself is
of independent interest as it uses multiplicative weight updates which we shall
study in greater detail later. This algorithm and its analysis appeared in the
work of Littlestone [33]. The algorithm in the paper can be generalized to
certain types of linear threshold functions which we won’t consider here.

102 CHAPTER 9. MISTAKE-BOUNDED LEARNING

Algorithm 9.4: The Winnow Algorithm
1 Input: Sequence ((xi, yi))∞i=1 provided online.
2 // initialize with a vector of 1s
3 Set w1 = (1, 1, . . . , 1) of length n
4 for t = 1, 2, 3, . . . do
5 Receive xt ∈ {0, 1}n
6 ŷt = 1

(
wt · xt ≥ n

2
)

7 Receive yt
8 if ŷt = 1 and yt = 0 then // mistake made; elimination case
9 for j = 1, . . . n do

10 if xt,j = 1 then // jth bit of xt is 1
11 wt+1,j = 0
12 else
13 wt+1,j = wt,j
14 else if ŷt = 0 and yt = 1 then // mistake made; promotion case
15 for j = 1, . . . n do
16 if xt,j = 1 then // jth bit of xt is 1
17 wt+1,j = 2wt,j
18 else
19 wt+1,j = wt,j
20 else
21 wt+1 = wt

Winnow starts by assigning a weight of 1 for every input feature. It adjusts
these weights every time it makes a mistake by either doubling the weight for
some feature or setting it to 0. Once a weight is set to 0 it can never become
non-zero again. The predictions are made using a weighted majority rule. The
main result we will prove is that for online learning monotone disjunctions, the
mistake bound of Winnow is O(k logn), where k is the number of variables in
the target disjunction.

Theorem 9.12. Let ((xi, yi))∞i=1 be an infinite sequence with yi = fS(xi) for
every i where |S| = k. Then if Winnow (Alg. 9.4) is given this input in an
online fashion, the number of mistakes made by Winnow is at most 2k log2 n+2.

Proof. We will prove this theorem through a sequence of claims which are
proved separately. Let P be the number of times the algorithm makes mistakes
of the form where yt = 1 and ŷt = 0. These are promotion steps, as the weights
increase for some of the features. Let E be the number of times the algorithm
makes mistakes of the form of yt = 0 and ŷt = 1. These are elimination steps,
as some weights are set to 0.

The total number of mistakes is P +N . Claim 9.15 shows that P ≤ k log2 n
and Claim 9.14 shows that E ≤ P + 2. Together these yield the required
result.

Claim 9.13. Under the conditions of Theorem 9.12, if wt,i is the weight of
the ith feature at time t for the Winnow Algorithm (Alg. 9.4), we have wi,t ≤ n.

9.5. THE WINNOW ALGORITHM 103

Proof. Suppose there is a mistake at time t. Clearly the weights only increase
when yt = 1 and ŷt = 0. Only those indices i for which xt,i = 1 can have their
weights changed. The fact that ŷt = 0 means that wt,i < n/2 for each i such
that xt,i = 1. Then, it follows that wt+1,i ≤ n.

Claim 9.14. Under the conditions of Theorem 9.12, if P is the number of
mistakes when ŷt = 0 and E is the number of mistakes when ŷt = 1, we have
E ≤ P + 2.

Proof. We consider how the quantity
∑
i wt,i varies with time. Note that this

quantity is always non-negative and when t = 1,
∑
i w1,i = n. Every mistake

where yt = 1 and ŷt = 0 increases the sum of weights by at most n/2. This is
because the weights are doubled for all i such that xt,i = 1; however, the reason
ŷt = 0 was that

∑
i wt,ixt,i < n/2. So doubling these weights can’t increase

the total weight by more than n/2.
On the other hand, by essentialy the same logic, every mistake where yt = 0

and ŷt = 1 decreases the total weight by at least n/2.
Thus, we have for all t,

0 ≤
∑
i

wt,i ≤ n+ P · n2 − E ·
n

2 .

The conclusion then follows.

Claim 9.15. Under the conditions of Theorem 9.12, if P is the number of
mistakes when ŷt = 0, we have P ≤ k log2 n.

Proof. We look at each time a mistake of the type where yt = 1 and ŷt = 0
occurs. There must be some i ∈ S, where S is the set of literals in the target
disjunction, such that xt,i = 1. Thus wt,i will be doubled. Note that for any
i ∈ S, wt,i can never be set to 0 and every mistake that is counted in P doubles
the weight of at least one of the relevant variables. The fact that |S| ≤ k and
Claim 9.13 finishes the proof.

Chapter 10

Online Learning with Expert
Advice

In this chapter, we will move away from the prediction learning framework,
either binary or real-valued, and consider a more abstract sequential decision
making framework. The general framework turns out to be very powerful, and
as applications, we will re-derive a boosting algorithm similar to AdaBoost, as
well as see a proof of von Neumann’s Min-Max theorem.

10.1 Learning with Expert Advice

We consider a sequential decision making problem as a repeated game between
a learning algorithm or a decision maker (DM) and an environment. The game
will be played for T rounds and we assume that T is known to the decision
maker.1 The decision maker has to choose between n options at each time
step; the decision maker can pick a probability distribution over n options, i.e.
a point from the probability simplex,

∆n = {x | x ∈ Rn, xi ≥ 0,
∑
i

xi = 1}.

These options are sometimes called experts; this is because we can view this
as the decision maker having advice from n different experts and seeking to
combine the advice to come up with its own decision rule. Hence the name
learning with expert advice. The game proceeds in rounds as follows. For
t = 1, 2, . . . , T :

• At time t, DM picks xt ∈ ∆n.

• The environment picks a loss vector lt ∈ [0, 1]n.

• The loss suffered by DM at time t is xt · lt and DM observes the entire
loss vector, lt.

First, we consider the choice of the decision maker. The decision maker may
choose xt at time t based on all the available information, i.e. x1, l1, . . . ,xt−1, lt−1.
In principle, we would allow xt to be an arbitrary computable function of

1This is not a serious restriction. For tricks to remove this restriction refer to [17].

105

106 CHAPTER 10. ONLINE LEARNING WITH EXPERT ADVICE

the history, though the algorithms we study turn out to be computationally
efficient.

Second, we can consider the loss vectors lt produced by the environment.
We will not constrain the environment beyond the requirement that each entry
of lt be in the interval [0, 1]. In fact, the environment may chose the loss vector
lt in response to all the available history, including the choice xt made by the
decision maker at time t.

How do we measure performance of the decision maker in this case? Clearly
simply requiring the DM to minimise loss across the T time-steps is not sufficient
as the environment could simply require all n options to have a loss of 1 at each
time-step. Instead, we will be interested in a notion of relative performance
with respect to a class of strategies. We will look at the simplest set of
strategies, i.e. strategies that don’t change over time. However, we will find the
best such strategy in hindsight. We define the notion of regret of the decision
maker, DM, as,

Regret(DM) =
T∑
t=1

xt · lt − min
x∈∆n

T∑
t=1

x · lt.

It is worth commenting on the notion of regret before we design algorithms to
minimise regret. The decision maker has the advantage of being able to change
its decisions every time-step but has the disadvantage of not knowing the future.
On the other hand, the performance comparison is to a fixed strategy which
has the benefit of hindsight. (It is worth observing that regret may be negative
in this case.) What this suggests is that if there was a fixed strategy that
would have performed “well”, then having low regret would suggest that the
decision maker performs almost as well. Thus, if the environment was relatively
benign with loss vectors not changing very rapidly and the same options doing
well over time, we would expect the decision maker to eventually figure out
a good distribution over options. On the other hand, if the environment was
very adversarial and no fixed strategy could have achieved a good performance
then we would not expect the decision maker to have low loss even if it had
low regret. Of course, one may take the view that the comparison to fixed
strategies is too restrictive and we would like the decision maker to have low
regret with more complex strategies. Indeed, such problems can be considered
and the interested reader is referred to the excellent book by Cesa-Bianchi and
Lugosi [17] for several generalisations and extensions.

A natural interpretation of the above formulation is in terms of betting
over n differen options which may change in value over time in uncertain ways.
We can spread a unit amount of money every day and we would like our long
term performance to be not much worse than the single best option (or single
distribution) in hindsight. In fact, because the loss function l · x is linear in x,
the minimum is (also) achieved at a vertex of the simplex ∆n. So we may in
fact simply compare our performance with the best single option and rewrite
the definition of regret as,

Regret(DM) =
T∑
t=1

xt · lt − min
i∈[n]

T∑
t=1

lt,i.

10.2. FOLLOW THE LEADER 107

10.2 Follow The Leader

We will use the notation Lt =
∑t−1
s=1 ls. A natural strategy is to pick xt at

time t that minimises the cumulative historical loss, i.e. pick xt ∈ ∆n that
minimises xt ·Lt. In fact, this xt can be chosen to be one of the vertices of the
simplex ∆n, i.e. we may pick xt with xt,i = 1 for i ∈ argmini Lt,i and xt,j = 0
for j 6= i. This algorithm is sometimes called Follow-the-Leader as it picks the
strategy that has historically proved the best.

It turns out however that a strategy that would have perfomed best on
historical observations, may not perform well in the future, and indeed this
algorithm does not get a good bound on the regret. The following example with
only two options, when T is even, establishes the problem with this strategy.

l1 l2 l3 l4 . . . lT
Option 1 0.5 0 1 0 . . . 0
Option 2 0 1 0 1 . . . 1

The strategy may pick either option at time t = 1, but subsequently it
would always pick option 2 in even time steps and option 1 in odd time steps.
Thus, it would incur a total loss of at least T − 1. However, the first option
only has a loss of T/2 − 1/2. Thus, the regret incurred is at least T/2 − 1/2
which grows linearly in T . At least asymptotically this is a completely trivial
regret bound as no algorithm incurs a loss of more than T as the losses are
constrained to be in [0, 1] at each time step.

Although the Follow-the-Leader strategy does not work well in this particular
case, there are online optimization problems in which the strategy does give
non-trivial (and in fact close to optimal) regret bounds. The problem in this
specific setting is that the decision rule is too unstable, i.e. it may change
drastically at every time step based on small changes to the loss vectors. In
the next section, we will see a small modification to the algorithm that is more
stable that does actually give optimal regret bounds.

10.3 The Multiplicative Weight Update Algorithm
(MWUA)

Algorithm 10.1 presents the Multiplicative Weight Update Algorithm (MWUA)
for the sequential decision making problem. This algorithm, or close variants,
go by various names includingWeighted Majority, Exponentially-weighted Forecaster,
Hedge, etc. The reason for these names and indeed variants is that very
similar abstractions of this sequential decision making problem have been
studied in various fields including information theory, game theory, learning
theory, complexity theory, among others. The excellent survey article by
Arora et al. [7] gives several variants of this algorithm and applications to
approximation algorithms and optimization. The book by Cesa-Bianchi and
Lugosi [17] considers various problems in learning theory, game theory, information
theory and optimization.

Before we analyse the algorithm, let us see in what sense this algorithm
is a tweak of the Follow-the-leader Algorithm. Let Lt =

∑t−1
s=1 ls as defined

above. Then the Follow-the-leader strategy simply picks xt that minimises Lt,
which can be represented by vectors in argminx∈∆n

x · Lt. In fact, all vectors

108 CHAPTER 10. ONLINE LEARNING WITH EXPERT ADVICE

Algorithm 10.1: The Multiplicative Weight Update Algorithm
(MWUA)

1 Input: Time Horizon T ; parameter η
2 // initialize w1 with a vector of 1s
3 Let w1 = (1, . . . , 1)> ∈ Rn
4 for t = 1, 2, . . . , T do
5 xt = wt

Zt
, Zt =

∑n
i=1 wt,i

6 Play xt
7 Receive loss xt · lt
8 Observe lt
9 for j = 1, . . . n do

10 wt+1,j = wt,j · exp(−ηlt,i)

in argminx∈∆n
x · Lt are exactly the subgradients of the function f : Rn → R,

given by f(z) = mini zi at the point Lt. Instead, if we define the function,

fη(z) = −1
η

ln

 n∑
i=1

e−ηzi

 ,

then it is easy to see that in the limit as η → ∞ fη(z) = mini zi. Thus, fη
is from a family of soft min functions, which are differentiable; the gradient
of fη is called the argsoftmin function and indeed the MWUA algorithm sets
xt = ∇fη(Lt). The softening of the min function can be viewed as a form
of regularization. Yet another view of the xt picked by the algorithm is the
following, xt is the constrained minimum of the following optimization problem,

min
x∈∆n

Lt · x−
1
η
H(x).

where H(η) = −
∑n
i=1 xi ln xi is the entropy function. The negative entropy

term above acts as a regularizer. Minimising the function Lt · x pushes the
solution to a corner of the simplex, whereas minimising the negative entropy
term pushes it towards the centre of the simplex, i.e. encourages more hedging.

Indeed, many analyses of the regret bound of MWUA are possible using
the interpretations above, some of which lead to more insightful proofs. We
will consider a short potential-based proof which uses the Zt as a potential
function.

Theorem 10.1. For the MWUA algorithm run with η =
√

n
T , we have,

Regret(MWUA) ≤ 2
√
T lnn.

Proof. Consider the following,

Zt+1

Zt
=
∑n
i=1 wt+1,i

Zt
=
∑n
i=1 wt,i exp(−ηlt,i)

Zt

10.3. THE MULTIPLICATIVE WEIGHT UPDATE ALGORITHM
(MWUA) 109
By the convexity of z 7→ e−ηz, we have exp(−ηz) ≤ 1+(e−η−1)z for z ∈ [0, 1].
Thus, we have,

Zt+1

Zt
≤

t∑
i=1

wt,i
Zt
· (1 + (e−η − 1)lt,i)

= 1 + (e−η − 1)xt · lt.

Above, we have used the definition xt = wt/Zt. Further, using the fact that
1 + x ≤ ex, we have,

Zt+1

Zt
≤ exp

(
(e−η − 1)xt · lt

)
.

We can multiply the ratios Zt+1/Zt for t = 1, . . . , T , and use the bound above
to obtain,

ZT+1

Z1
≤ exp

(e−η − 1) ·
T∑
t=1

xt · lt

 . (10.1)

On the other side, we note that wt,i = exp(−η
∑t−1
s=1 ls,i). So we have the

following for each i ∈ [n],

ZT+1

Z1
≥ wT+1,i

n
=

exp
(
−η
∑T
t=1 lt,i

)
n

. (10.2)

Combining Equations (10.1) and (10.2), and taking natural logarithms, we
have for each i ∈ [n],

−η
T∑
t=1

lt,i − lnn ≤ (e−η − 1)
T∑
t=1

xt · lt.

Moving lnn to the RHS and adding η
∑T
t=1 xt · lt to both sides, we get,

η

 T∑
t=1

xt · lt −
T∑
t=1

lt,i

 ≤ (e−η − (1− η))
T∑
t=1

xt · lt + lnn.

Using the fact that e−η ≤ 1 − η + η2 for η ∈ [0, 1] and dividing both sides by
η, we have for all i,

T∑
t=1

xt · lt −
T∑
t=1

lt,i ≤ η
T∑
t=1

xt · lt + lnn
η
.

Finally, noticing that xt · lt ≤ 1 for each t, setting η as in the statement of
the theorem, and observing that because the above holds for each i ∈ [n], by
linearity, it applies to each x ∈ ∆n, we get the result as follows:

T∑
t=1

xt · lt −
T∑
t=1

n∑
i=1

xilt,i ≤ ηT + lnn
η
≤ 2
√
T lnn.

As the above applies to each x ∈ ∆n, we are done.

110 CHAPTER 10. ONLINE LEARNING WITH EXPERT ADVICE

We remark that the choice xt made by the algorithm at time t only depends
on the loss vectors l1, . . . , lt−1 given by the environment (in fact only on their
sum). There is no dependence whatsoever on the past choices made by the
algorithm, and the algorithm itself is completely deterministic. Hence, even if
the environment completely adversarially picks the loss vectors lt the algorithm
still retains the guarantee. In fact, there is no need for the environment to wait
to see the choice made by the algorithm as it can be computed directly using the
previous loss vectors. In this sense, the MWUA algorithm achieves guarantees
against adaptive and adversarial environments. This particular aspect will be
useful in applications to game theory.

10.3.1 Lower Bound

In this section, we will give a sketch of why the bound achieved in Theorem 10.1
is essentially tight (up to constant factors). We will not give a formal proof,
though writing a formal proof is not very difficult. We will also only establish
a lower bound of Ω(

√
T) for deterministic algorithms, when there are only

n = 2 options. The environment at time t picks the loss vector (1, 0) or
(0, 1) with equal probability independently at each time step. Now for any
algorithm, its expected loss is exactly T/2. On the other hand the expectation
of mini∈{1,2}

∑T
t=1 lt,i is T/2− Ω(

√
T). This follows from a simple exercise: if

X ∼ Binomial(T, 1/2), what is the E
[
min{X,T −X}

]
? This shows that the√

T factor in the regret bound is tight; a slightly more detailed construction
shows that

√
lnn is also required in the regret bound as a multiplicative factor.

The formal proof appears in [17].

10.4 Application: Boosting Algorithm

In this section, we will see an application of the MWUA algorithm to get a
boosting algorithm. As in the case of AdaBoost, we will assume that the
weak learner returns hypotheses from a hypothesis class, H, of finite VC
dimension and focus on finding a (combined) hypothesis that is consistent
with the training data. We will not worry about generalization error here as it
can be done by bounding the VC dimension of the resulting classifier exactly
as in the case of AdaBoost. In fact, there are many similarities between the
AdaBoost algorithm and MWUA and indeed in their analyses.

Let S = {(x1, y1), . . . , (xm, ym)} be a training dataset withm points, where
yi = c(xi) for some c ∈ C. Here C is the concept class for which we have a
weak learning algorithm available.

We are going to treat this as a sequential decision making problem with m
options. At each time t, the decision maker, DM, will use MWUA to pick a
distribution, which we will call dt ∈ ∆m to distinguish it from the data (x, y).

We will also simulate the environment. For this reason, we will use the
weak learning algorithm, WeakLearn. We shall assume for simplicity that
the weak learning algorithm succeeds with probability 1 instead of probability
1 − δ. At time t, let ht be the hypothesis returned by the weak learning
algorithm with respect to distribution dt ∈ ∆m. Note that the distribution
dt, puts probability mass dt,i on (xi, yi) for i = 1, . . . ,m. In particular, we
have err(ht; dt) ≤ 1

2 − γ, where γ is the parameter of WeakLearn. We define

10.5. APPLICATION: VON NEUMANN’S MIN-MAX THEOREM 111

the loss vector lt ∈ [0, 1]m as follows, lt,i = 1 if ht(xi) = yi and lt,i = 0
otherwise. Based on the construction and the property of the weak learner, we
have dt · lt = 1− err(ht; dt) ≥ 1

2 + γ for every t.
We can make use of the regret guarantee. Note that lt,i = 1(ht(xi) = yi).

Theorem 10.1 gives us that provided the DM uses MWUA to generate the
decisions dt ∈ ∆m, we have for each i,

T∑
t=1

dt · lt −
T∑
t=1

1(ht(xi) = yi) ≤ 2
√
T lnm.

Using, the fact that dt · lt ≥ 1/2 + γ for each t, and rearranging, we get,

T ·
(

1
2 + γ

)
− 2
√
T lnm ≤

T∑
t=1

1(ht(xi) = yi).

Hence,

T

2 +
√
T · (γ

√
T − 2

√
lnm) ≤

T∑
t=1

1(ht(xi) = yi).

Observe that for T > 4 lnm/γ2, the LHS is strictly larger than T/2. This
means that the majority of the hypotheses ht classify the ith example (xi, yi)
correctly for every i. Thus simply outputting majority{h1(x), . . . , hT (x)} will
give a hypothesis that is consistent with the training set. Note that the number
of calls made to the weak learning algorithm is of the same order as that made
by Adaboost and as the majority function can be written as thresholds of
hypotheses from the hypothesis class used by WeakLearn, the generalization
error can be bounded in exactly the same way as in the analysis of AdaBoost.

10.5 Application: von Neumann’s Min-Max Theorem

As another application of the MWUA algorithm, we will give a proof von
Neumann’s Min-Max theorem. We will be brief and terse in our description of
two player zero-sum games. Readers unfamiliar with these notions may wish
to read the introductory chapter in a book on game theory.

We will consider finite two player zero-sum games with bounded payoffs.
We will assume that all payoffs are bounded in [0, 1]. The game has two players,
typically called a row player and a column player. The game is specificed as an
n×m matrix, A, with n rows and m columns. The row player has to pick one
of n options and the column player has to pick one of m options. If the row
player picks i and the column player picks j, then the row player gets a payoff
of Aij . (As it is a zero-sum game, the payoff to the column player is −Aij .)
Clearly, there is an advantage to moving second as you can observe the option
picked by the other player. Suppose the row player moves first: if they pick
i, the column player will certainly pick j that will minimize the payoff of the
row player (as it is a zero sum game), resulting in a payoff of minj Aij ; thus to
maximise their payoff they will pick i for which this quantity is the largest. In
other words, the best achievable payoff for the row player is maxi minj Aij .

112 CHAPTER 10. ONLINE LEARNING WITH EXPERT ADVICE

An entirely identical arugment shows that the best payoff achieved by the
row player if they go second is minj maxiAij . This is of course assuming that
both players are playing rationally. Thus, clearly we have that,

max
i

min
j
Aij ≤ min

j
max
i
Aij .

When players are forced to pick a single option, something which is known as
pure strategies, the above inequality can indeed be strict. The following simple
game in which both players have two options establishes a strict inequality.

1 2
1 3 2
2 1 4

For this game, maxi minj Aij = 2 and minj maxiAij = 3. However, we
can also consider mixed strategies, where rather than picking a single option,
each player picks a distribution over their options. The other player can see
the distribution of their competitor, but not the actual random choice. For
example, think of playing rock-paper-scissors with someone, where you know
their (random) strategy, but can’t predict what particular random choice they
will make when actually playing the game. Now suppose the row player has a
strategy x ∈ ∆n and a column player has strategy y ∈ ∆m, then the payoff to
the row player (in expectation) is,

E
i∼x,j∼y

[
Aij
]

= x>Ay.

We can similarly define optimal strategies for the row player depending
on whether they are going first or second. When the row player goes first, the
optimal value they can achieve is called the maxmin value, denoted by vmaxmin,
and defined as,

vmaxmin = max
x∈∆n

min
y∈∆m

x>Ay.

Similarly, the best value achievable by the row player if they go second is the
minmax value, denoted by vminmax, and defined as,

vminmax = min
y∈∆m

max
x∈∆n

x>Ay.

As in the previous case, we can immediately see that vmaxmin ≤ vminmax.2
What von Neumann’s theorem states is that, for finite two player zero-sum
games, vmaxmin = vminmax.

We could of course frame this theorem in terms of losses rather than payoffs,
but that would deviate from standard statements of this result. Instead, we
make a series of observations. It is without loss of generality to assume that
payoffs are in [0, 1]. First, we can always make payoffs for the row player to be
positive because as solution concepts, zero-sum games and constant-sum games
are identical. Second, we can always scale payoffs so that they are in the interval
[0, 1]. Finally, we can replace losses in the sequential decision making problem

2Essentially, this side of the argument is weak duality, and von Neumann’s theorem states
that strong duality holds.

10.5. APPLICATION: VON NEUMANN’S MIN-MAX THEOREM 113

by payoffs, or rather consider loss vectors as coming from payoff vectors, pt
and set lt = 1− pt. Then, we can rephrase the statement of Theorem 10.1 as,

Regret(MWUA) = max
x∈∆n

T∑
t=1

x · pt −
T∑
t=1

xt · pt ≤ 2
√
T lnn. (10.3)

We will simply run the algorithm by using lt = 1−pt as our loss vectors when
we are actually given payoff vectors pt.

With that out of the way, we are ready to give a proof of von Neumann’s
Min-Max theorem using the MWUA algorithm. The row player will implement
the MWUA algorithm (with payoff vectors suitably converted to loss vectors).
Let xt ∈ ∆n be the strategy picked by MWUA at time t. The column player
picks yt as,

yt ∈ argmin
y

x>t Ay.

Clearly, we have that,

y>t Ay = min
y∈∆m

x>t Ay ≤ max
x∈∆n

min
y∈∆m

x>Ay = vmaxmin.

We set the payoff vector pt = Ayt ∈ [0, 1]n; and note that the above inequalities
show that xt · pt ≤ vminmax for all t. Hence,

T∑
t=1

xt · pt ≤ Tvmaxmin. (10.4)

On the other hand, we have,

max
x∈∆n

T∑
t=1

x · pt = T · max
x∈∆n

x>A 1
T

T∑
t=1

yt

≥ T · min
y∈∆m

max
x∈∆n

x>Ay = Tvminmax. (10.5)

Combining Eqns. (10.3), (10.4) and (10.5), we get that,

vminmax − vmaxmin ≤
1
T
· Regret(MWUA) ≤ 2

√
lnn
T
.

Since the above holds for all T ≥ 1, it must be that vminmax ≥ vmaxmin which
completes the proof of the theorem.

Appendix A

Inequalities from Probability
Theory

It is assumed that the reader has sufficient familiarity with the basics of the
theory of probability.

A.1 The Union Bound

This is an elementary inequality, though surprisingly powerful in several applications
in learning theory and the analysis of algorithms. If A1, A2, . . . is a (at most
countable) collection of events, then

P

⋃
i

Ai

 ≤∑
i

P(Ai). (A.1)

This inequality is known as the union bound (or Boole’s inequality) as it shows
that the probability of the union of a collection of events can be upper-bounded
by the sum of the probabilities of the individual events in the union.

A.2 Hoeffding’s Inequality

LetX1, . . . , Xm bem independent random variables taking values in the interval
[0, 1]. Let X = 1

m

∑m
i=1Xi and let µ = E[X]. Then for every t ≥ 0,

P
[∣∣∣X − µ∣∣∣ ≥ t] ≤ 2 exp

(
−2mt2

)
. (A.2)

This inequality is known as the Hoeffding’s inequality [27].

A.3 Chernoff Bound

Let X1, . . . , Xm be m independent random variables taking values in the set
{0, 1}. Let X =

∑m
i=1Xi and let µ = E[X]. Then for every 0 ≤ δ ≤ 1,

P
[
X ≤ (1− δ)µ

]
≤ exp

(
−δ2µ/2

)
, (A.3)

P
[
X ≥ (1 + δ)µ

]
≤ exp

(
−δ2µ/3

)
. (A.4)

115

116 APPENDIX A. INEQUALITIES FROM PROBABILITY THEORY

The above pair of inequalities are known as the Chernoff bound. These are
not the tightest possible bounds that can be obtained, but will be sufficient
for our purposes. The interested reader may refer to more complete works on
concentration inqualities, e.g. [22, 13].

Appendix B

Elementary Inequalities

B.1 Convexity of exp

For any x ∈ R, the following inequality holds,

1 + x ≤ ex. (B.1)

The proof is immediate using the convexity of the exponential function.

B.2 Auxilliary Lemmas

Lemma B.1. For any a ≥ e, b > 0, for every x ≥ max{8, 2 + 2 log b}a log a,
x ≥ a log(bx).

Proof. Let f(x) = x − a log(bx). It is easy to check that f ′(x) ≥ 0 for x ≥ a.
Note that if C = max{8, 2 + 2 log b} and as a ≥ e, we have Ca log a ≥ a. As a
result, f(x) ≥ f(Ca log a). Thus it suffices to show that f(Ca log a) ≥ 0.

This can be verified as follows:

f(Ca log a) = Ca log a− a log(Cab log a)
= Ca log a− a logC − a log a− a log b− a log log a
= (2a log a− a log a− a log log a) + a((C − 2)/2− logC)

+ a((C − 2)/2− log b)
≥ 0.

Above we have used that log log a ≤ log a, log a ≥ 1, C ≥ 2 + 2 log b and
that for C ≥ 8, C ≥ 2 + 2 logC.

117

Appendix C

Notation

C.1 Basic Mathematical Notation
N The set of natural numbers (not including 0)
Z The set of integers
Q The set of rational numbers
R The set of real numbers

C.2 The PAC Learning Framework

x A datum or the input part of an example
xi The ith co-ordinate (attribute) of example x

119

Bibliography

[1] Sarah R Allen, Ryan ODonnell, and David Witmer. How to refute a
random csp. In Foundations of Computer Science (FOCS), 2015 IEEE
56th Annual Symposium on, pages 689–708. IEEE, 2015.

[2] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley &
Sons, 2004.

[3] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and computation, 75(2):87–106, 1987.

[4] Dana Angluin and Michael Kharitonov. When won’t membership queries
help? In Proceedings of the twenty-third annual ACM symposium on
Theory of computing, pages 444–454. ACM, 1991.

[5] Dana Angluin and Philip Laird. Learning from noisy examples. Machine
Learning, 2(4):343–370, 1988.

[6] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009.

[7] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights
update method: a meta-algorithm and applications. Theory of Computing,
8(1):121–164, 2012.

[8] Peter Auer, Mark Herbster, and Manfred K Warmuth. Exponentially
many local minima for single neurons. Advances in neural information
processing systems, pages 316–322, 1996.

[9] Paul W Beame, Stephen A Cook, and H James Hoover. Log depth circuits
for division and related problems. SIAM Journal on Computing, 15(4):
994–1003, 1986.

[10] Hans-Dieter Block. The perceptron: A model for brain functioning. i.
Reviews of Modern Physics, 34(1):123, 1962.

[11] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay
Mansour, and Steven Rudich. Weakly learning dnf and characterizing
statistical query learning using fourier analysis. In Proceedings of the
twenty-sixth annual ACM symposium on Theory of computing, pages 253–
262. ACM, 1994.

[12] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning,
the parity problem, and the statistical query model. Journal of the ACM
(JACM), 50(4):506–519, 2003.

121

122 BIBLIOGRAPHY

[13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration
inequalities: A nonasymptotic theory of independence. Oxford University
Press, 2013.

[14] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[15] Nader H Bshouty and Vitaly Feldman. On using extended statistical
queries to avoid membership queries. Journal of Machine Learning
Research, 2(Feb):359–395, 2002.

[16] Sébastien Bubeck. Convex Optimization: Algorithms and Complexity.
Foundations and Trends in Machine Learning. Now, 2015.

[17] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games.
Cambridge University press, 2006.

[18] Amit Daniely. Complexity theoretic limitations on learning halfspaces.
arXiv preprint arXiv:1505.05800, 2015.

[19] Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations
on learning DNFs. CoRR, abs/1404.3378, 1(2.1):2–1, 2014.

[20] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case
complexity to improper learning complexity. In Proceedings of the Forty-
sixth Annual ACM Symposium on Theory of Computing, STOC ’14, pages
441–448, New York, NY, USA, 2014. ACM.

[21] Ronald de Wolf. Philosophical applications of computational learning
theory : Chomskyan innateness and occam’s razor. Master’s thesis,
Erasmus Universiteit Rotterdam, 1997.

[22] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of measure
for the analysis of randomized algorithms. Cambridge University Press,
2009.

[23] Yoav Freund. Boosting a weak learning algorithm by majority. In COLT,
volume 90, pages 202–216, 1990.

[24] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization
of on-line learning and an application to boosting. In European conference
on computational learning theory, pages 23–37. Springer, 1995.

[25] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. In Foundations of Computer Science, 1984. 25th
Annual Symposium on, pages 464–479. IEEE, 1984.

[26] Peter D Grünwald. The minimum description length principle. MIT press,
2007.

[27] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–30,
1963. ISSN 01621459. URL http://www.jstor.org/stable/2282952.

http://www.jstor.org/stable/2282952

BIBLIOGRAPHY 123

[28] Edwin T Jaynes. Probability theory: The logic of science. Cambridge
university press, 2003.

[29] Michael Kearns. Efficient noise-tolerant learning from statistical queries.
Journal of the ACM (JACM), 45(6):983–1006, 1998.

[30] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning
boolean formulae and finite automata. In Proceedings of the Twenty-first
Annual ACM Symposium on Theory of Computing, 1989.

[31] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning
boolean formulae and finite automata. Journal of the ACM (JACM), 41
(1):67–95, 1994.

[32] Michael J. Kearns and Umesh K. Vazirani. An Introduction to
Computational Learning Theory. The MIT Press, 1994.

[33] Nick Littlestone. Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm. Machine learning, 2(4):285–318, 1988.

[34] A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency
in Optimization. Wiley Interscience, 1983.

[35] Albert B Novikoff. On convergence proofs for perceptrons. Technical
report, Stanford Research Institute, Menlo Park, CA, 1963.

[36] Christos H Papadimitriou. Computational complexity. John Wiley and
Sons Ltd., 2003.

[37] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958.

[38] Robert E Schapire. The strength of weak learnability. Machine learning,
5(2):197–227, 1990.

[39] Leslie Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

Index

3-term-DNF, 13

AdaBoost, 40

Boole’s inequality, see union bound
boolean circuit, 18
boolean hypercube, 7
boosting, 40

Chernoff Bound, 115
clauses, see disjunctions
concept class, 5
conjunctions, 9
consistent learning, 22

decision list, 26
DFA, see Discrete Finite Automata
dichotomies, 27
Discrete Finite Automata, 56
disjunctions, 11
disjunctive normal form, see DNF
DNF, 7

error, 6
example oracle, 5

growth function, 30

Hoeffding’s inequality, 115
hypothesis class, 16

improper learning, 17
instance size, 8
instance space, 5

k-CNF, 11

linear threshold functions, 18, 29,
36

LTF, see linear threshold functions

Noisy Oracle (RCN), 61

Occam’s Razor, 21

PAC learning, 17
Take I, 6
Take II, 7

parities, 25
proper learning, 17

Radon’s Theorem, 37
Random Classification Noise, 61
randomized polynomial time, 13
RCN, see Random Classification Noise
representation scheme, 8
representation size, 8
RP, see randomized polynomial time

Sauer’s Lemma, 30
shattering, 28
size, see representation size
SQ Learning, see Statistical Query

Learning
STAT oracle, 64
Statistical Query Learning, 65

union bound, 115

VC dimension, 28

weak learning, 40

125

	Contents
	Preface
	Probably Approximately Correct Learning
	A Rectangle Learning Game
	Key Components of the PAC Learning Framework
	Learning Conjunctions
	Hardness of Learning 3-term DNF
	Learning 3-CNF vs 3-TERM-DNF
	PAC Learning
	Exercises
	Chapter Notes

	Consistent Learning and Occam's Razor
	Occam's Razor
	Consistent Learning
	Improved Sample Complexity
	Exercises

	The Vapnik Chervonenkis Dimension
	The Vapnik Chervonenkis (VC) Dimension
	Growth Function
	Sample Complexity Upper Bound
	Sample Complexity Lower Bounds
	Consistent Learner for Linear Threshold Functions
	Exercises

	Boosting
	Weak Learnability
	The AdaBoost Algorithm
	Exercises

	Cryptographic Hardness of Learning
	The Discrete Cube Root Problem
	A learning problem based on DCRA
	Chapter Notes

	Exact Learning using Membership and Equivalence Queries
	Exact Learning with Membership and Equivalence Queries
	Exact Learning MONOTONE-DNF using MQ+EQ
	Learning DFA
	Exercises

	Statistical Query Learning
	Random Classification Noise Model
	Statistical Query Model
	A hard-to-learn concept class
	Exercises
	Bibliographic Notes

	Learning Real-valued Functions
	Learning Real-Valued Functions
	Projected Gradient Descent for Lipschitz functions
	Rademacher Complexity
	Linear Regression
	Generalised Linear Models

	Mistake-Bounded Learning
	Online Prediction Framework
	Relationships to Other Models of Learning
	The Halving Algorithm and Some Examples
	Perceptron
	The Winnow Algorithm

	Online Learning with Expert Advice
	Learning with Expert Advice
	Follow The Leader
	The Multiplicative Weight Update Algorithm (MWUA)
	Application: Boosting Algorithm
	Application: von Neumann's Min-Max Theorem

	Inequalities from Probability Theory
	The Union Bound
	Hoeffding's Inequality
	Chernoff Bound

	Elementary Inequalities
	Convexity of exp
	Auxilliary Lemmas

	Notation
	Basic Mathematical Notation
	The PAC Learning Framework

	Bibliography
	Index

