
Computational Learning Theory
Michaelmas Term 2022

Problem Sheet 1

Instructions: The problem sheets are designed to increase your understanding of the material
taught in the lectures, as well as to prepare you for the final exam. You should attempt to solve
the problems on your own after reading the lecture notes and other posted material, where
applicable. Problems marked with an asterisk are optional. Once you have given sufficient
thought to a problem, if you are stuck, you are encouraged to discuss with others in the course
and with the lecturer during office hours. You are not permitted to search for solutions online.

1 Learning Hyper-rectangles

The concept class of hyper-rectangles over Rn is defined as follows:

Cn = {[a1, b1]× · · · × [an, bn] | ai, bi ∈ R, ai < bi}

Generalise the algorithm discussed in class (for rectangles in R2) and show that it efficiently
PAC learns the class of hyper-rectangles. Give bounds on the number of samples required to
guarantee that the error is at most ϵ with probability at least 1− δ.

Note: You may assume that the distribution D over Rn can be expressed using a continuous
density function that is defined over all of Rn. (Optional : As an extra challenge, argue why the
algorithm still works even when such an assumption regarding the distribution does not hold.)

Hint : For the first part, follow exactly the same algorithm as in the lectures. For the optional
part, we need to change the definition of Cn slightly to allow ai ≤ bi (rather than ai < bi).
Suppose R is the target hyper-rectangle. Let p = Px∼D [x ∈ R]. Suppose p ≤ ϵ, then the
algorithm is always correct. Otherwise, define,

v1 = min

{
v ≥ a1 | Px∼D

[
[a1, v]× [a2, b2]× · · · × [an, bn]

]
≥ ϵ

2n

}
,

by assumption that p ≥ ϵ the set over which min is taken is non-empty. Argue that the min
above is well defined, i.e. using inf is not required, and define T1 to be the hyper-rectangle
[a1, v1]× [a2, b2]× · · · × [an, bn]. Similarly, define T2, T3, . . . , T2n, and follow the same analysis.

2 PAC Learning : Confidence Parameter

Say that an algorithm L perhaps learns a concept class C using hypothesis class H, if for every
n, for every concept c ∈ Cn, for every distribution D over Xn and for every 0 < ϵ < 1/2, L
given access to EX(c,D) and inputs ϵ and size(c), runs in time polynomial in n, size(c) and 1/ϵ,
and outputs a polynomially evaluatable hypothesis h ∈ Hn, that with probability at least 3/4
satisfies err(h) ≤ ϵ. In other words, we’ve set δ = 1/4 in the definition of efficient PAC learning.

Page 1



Computational Learning Theory
Michaelmas Term 2022

Show that if C is “perhaps learnable” using H, then C is also efficiently PAC learnable using
H.

Hint : You will have to use the Chernoff-Hoeffding bound. Your proof should not rely on
δ < 1/2, in particular it should work for δ = 3/4, even though we have required 0 < δ < 1/2 in
the definition of PAC learning.

3 Hardness of Learning Boolean Threshold Functions

We will consider the question of learning boolean threshold functions. Let Xn = {0, 1}n and for
w ∈ {0, 1}n and k ∈ N, fw,k : Xn → {0, 1} is a boolean threshold function defined as follows:

fw,k(x) =


1 if

n∑
i=1

wi · xi ≥ k

0 otherwise

Let THn = {fw,k | w ∈ {0, 1}n, 0 ≤ k ≤ n} and TH =
⋃

n≥1 THn. Show that unless RP = NP,
there is no efficient PAC-learning algorithm for learning TH, if the output hypothesis is also
required to be in TH, i.e., a proper PAC-learning algorithm.

Hint : You should reduce from Zero-One Integer Programming (ZIP) which is known to be
NP-complete. An instance of ZIP consists of an s× n matrix A with entries in {0, 1}, a vector
b ∈ {0, 1}s and a pair (c, B) (the objective) with c ∈ {0, 1}n and B ∈ Z. The decision problem
is to determine wither there exists an assignment for the n variables z1, . . . , zn, each variable

taking a value in the set {0, 1}, such that for each 1 ≤ i ≤ s,
n∑

j=1

Aijzj ≤ bi and
n∑

j=1

cjzj ≥ B.

4 Learning Parity Functions

Let Xn = {0, 1}n be the instance space. A parity function, χS , over Xn is defined by some
subset S ⊆ {1, . . . , n}, and takes the value 1 if and odd number of the input literals in the
set {zi | i ∈ S} are 1 and 0 otherwise. For example, if S = {1, 3, 4}, then the function
χS(z1, . . . , zn) = z1⊕ z3⊕ z4 computes the parity on the subset {z1, z3, z4}. Note that any such
parity function can be represented by a bit string of length n, by indicating which indices are
part of S. Let PARITIESn denote the concept class consisting of all 2n parity functions; observe
that the the concept class PARITIESn has representation size at most n. Show that the class
PARITIES, defined as PARITIES =

⋃
n≥1 PARITIESn, is efficiently proper PAC learnable. You

should clearly describe a learning algorithm, analyse its running time and prove its correctness.

Hint : The parity operation can be viewed as addition modulo 2. Use the fact that the set {0, 1}
under addition and multiplication modulo 2 is a field.

Page 2



Computational Learning Theory
Michaelmas Term 2022

5 Output Hypothesis as a Turing Machine (*)

Recall that in the definition of efficient PAC-learning, we require that the hypothesis output
by the learning algorithm be evaluatable in polynomial time. Suppose we relax this restriction,
and let H be the class of all Turing machines (not necessarily polynomial time)—so the output
of the learning algorithm can be any program. Let Cn be the class of all boolean circuits of size
at most p(n) for some fixed polynomial p and having n boolean inputs. Show that C =

⋃
n≥1Cn

is “efficiently” PAC-learnable using H (under this modified definition). Argue that this solution
shows that the relaxed definition trivialises the model of learning.

Hint : Outsource the computationally demanding work of finding a consistent classifier to h, the
hypothesis that makes predictions. Your learning algorithm only needs to indentify what input
needs to be given to the Turing Machine h.

Page 3


