
CS 174: Combinatorics and Discrete Probability Fall 2012

Homework 10 Solution

Problem 1. (Exercise 10.6 from MU – 8 points) The problem of counting the number of solutions
to a knapsack instance can be defined as follows: Given items with sizes a1, . . . , an > 0 and an
integer b > 0, find the number of vectors (x1, x2, . . . , xn) ∈ {0, 1}n, such that

∑n
i=1 aixi ≤ b. The

number b can be thought of as the size of a knapsack, and the xi denote whether or not each item
is put into the knapsack. Counting solutions corresponds to counting the number of different sets
of items that can be placed in the knapsack without exceeding its capacity.

(a) A näıve way of counting the number of solutions to this problem is to repeatedly choose
(x1, . . . , xn) ∈ {0, 1}n uniformly at random. If f is the fraction of valid solutions, then return
f · 2n. Argue why this is not a good strategy in general; in particular, argue that it will work
poorly when each ai is 1 and b =

√
n.

Solution: The problem is that the solution set may not be dense enough in the sample space.
Hence the uniform distribution over the whole sample space might not put enough weight
on the solution set, and we may need to wait a long time before obtaining a good enough
estimate of the number of solutions.

The expected number of 1’s chosen this way is n/2. If ai = 1 and b =
√
n, then by the

Chernoff bound (Eqn 4.5 in chapter 4)

Pr
(∑

aiXi ≤
√
n
)

= Pr

(∑
aiXi ≤

(
1− 2√

n

)
n

2

)
≤ exp

(
−n

2
(
√
n− 2

√
n)2/2

)
= O(e−n)

(b) Consider a Markov chain, X0, X1, . . . , on vectors (x1, . . . , xn) ∈ {0, 1}n. Suppose that Xj

is (x1, . . . , xn). At each time step, the Markov chain chooses i ∈ {1, . . . , n} uniformly at
random. If xi = 1, then Xj+1 is obtained from Xj by setting xi to 0. If xi = 0, then Xj+1

is obtained from Xj by setting xi to 1 if doing so maintains the restriction
∑n

i=1 aixi ≤ b.
Otherwise, Xj+1 = Xj .

Argue that this Markov chain has a uniform stationary distribution whenever
∑n

i=1 ai > b.
Be sure to argue that the chain is irreducible and aperiodic.

Solution: We first show that the chain is irreducible and aperiodic over the states of all valid
solutions of the knapsack problem. The chain is therefore ergodic and has a unique stationary
distribution by Theorem 7.7. We then demonstrate that the uniform distribution satisfies the
stationarity criterion.

Irreducibility: from any solution vector x, there is a positive probability of going back down
to the all zero vector by zeroing out the non-zero xi’s one by one. On the other hand, if x is
a solution, then it is possible to reach x starting from the all zero vector. Hence the chain is
irreducible.

Aperiodicity: suppose
∑n

i=1 ai > b, then there must exist j ∈ [1, n] and a vector x =
(x1, . . . , xj = 0, . . . , xn) ∈ {0, 1}n such that

∑
i aixi ≤ b but

∑
i aixi + aj > b. This means

that in the Markov chain, the self-loop probability Px,x > 0. Hence the chain is aperiodic.
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Let M be the number of solutions and let x and y be two solutions that differ by one bit. Then
Px,y = 1/n and Py,x = 1/n. If πx = πy = 1/M , then πxPx,y = 1

Mn = πyPy,x. This satisfies
the time-reversibility condition and proves that the stationary distribution is uniform.

(c) Argue that, if we have an FPAUS for the knapsack problem, then we can derive an FPRAS for
the problem. To set up the problem properly, assume without loss of generality that a1 ≤ a2 ≤
· · · ≤ an. Let b0 = 0 and bi =

∑i
j=1 ai. Let Ω(bi) be the set of vectors (x1, . . . , xn) ∈ {0, 1}n

that satisfy
∑n

i=1 aixi ≤ bi. Let k be the smallest integer such that bk ≥ b. Consider the
equation

|Ω(b)| = |Ω(b)|
|Ω(bk−1)|

× |Ω(bk−1|
|Ω(bk−2)|

× · · · × |Ω(b1)|
|Ω(b0)|

× |Ω(b0)|

You will need to argue that |Ω(bi−1)|/|Ω(bi)| is not too small. Specifically, argue that |Ω(bi)| ≤
(n+ 1)|Ω(bi−1)|.
Solution: The transformation of an FPAUS to an FPRAS is very similar to the example in
the book. Once we show that |Ω(bi)| ≤ (n+1)|Ω(bi−1)|, we’ll be able to get a run time bound
that is polynomial in n. Consider the sets A = Ω(bi) and B = Ω(bi−1). Since bi > bi−1, we
must have B ⊂ A. We’ll show that each point in A \B can be mapped to a point in B, and
that using this mapping, at most n solutions in A \ B will be mapped to the same point in
B. The desired bound of |A| ≤ (n+ 1)|B| then follows.

Consider vector x. If x ∈ A but x /∈ B, then by definition,
∑i−1

j=1 aj = bi−1 <
∑n

j=1 ajxj ≤
bi =

∑i
j=1 aj . Hence there must be k ≥ i such that xk = 1. Take the largest such k, set

xk = 0 and call the new vector x̃. Then x̃ ∈ B because

n∑
j=1

aj x̃j =
n∑
j=1

ajxj − ak ≤ bi − ak ≤ bi − ai = bi−1,

where we used the fact that ai ≤ ak for k ≥ i. Since there are at most n choices for k, at
most n solutions can be mapped to x̃.

To get an actual lower bound for M , notice that the only place that needs changing is
lowerbound for E[r̃i] on page 262. Most of the constants remain unchanged, except that
the input size is now represented by n. To estimate ri = |Ω(bi)|/|Ω(bi+1)|, we will need a
ε

6n -uniform sampler of Ω(bi+1). We just proved that ri ≥ 1/(n+ 1), hence

E[r̃i] ≥ ri −
ε

6n
≥ 1

n+ 1
− 1

6n
=

5n− 1

6n(n+ 1)
.

Applying Theorem 10.1, we see that we need the number of samples M to satisfy

M ≥
3 ln 2n

δ(
ε

12n

)2 · 6n(n+ 1)

5n− 1
= 2592ε−2n

3(n+ 1)

5n− 1
ln

2n

δ
.

The rest of the proof goes through without any other modifications.

Problem 2. (Exercise 10.7 from MU – 6 points) An alternative definition of an ε-uniform sample
of Ω is as follows: A sampling algorithm generates an ε-uniform sample w if, for all x ∈ Ω,

|Pr(w = x)− 1/|Ω||
1/|Ω|

≤ ε.
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Show that an ε-uniform sample under this definition yields an ε-uniform sample as given in Defini-
tion 10.3.

Solution: Suppose for all x ∈ Ω,

|Pr(w = x)− 1/|Ω||
1/|Ω|

≤ ε

⇒ |Pr(w = x)− 1/|Ω|| ≤ ε

|Ω|

So

∣∣∣∣Pr(w ∈ S)− |S|
|Ω|

∣∣∣∣ =

∣∣∣∣∣∑
x∈S

(
Pr(w = x)− 1

|Ω|

)∣∣∣∣∣
≤
∑
x∈S

∣∣∣∣Pr(w = x)− 1

|Ω|

∣∣∣∣
≤
∑
x∈S

ε

|Ω|

= ε

Problem 3. (Exercise 10.12 from MU – 6 points) The following generalization of the Metropolis
algorithm is due to Hastings. Suppose that we have a Markov chain on a state space Ω given by
the transition matrix Q and that we want to construct a Markov chain on this state space with
a stationary distribution πx = b(x)/B, where for all x ∈ Ω, b(x) > 0, and B =

∑
x∈Ω b(x) is

finite. Define a new Markov chain as follows: When Xn = x, generate a random variable Y with
Pr(Y = y) = Qx,y. Notice that Y can be generated by simulating one step of the original Markov
chain. Set Xn+1 to Y with probability

min

(
πyQy,x
πxQx,y

, 1

)
,

and otherwise set Xn+1 to Xn. Argue that, if this chain is aperiodic and irreducible, then it is also
time reversible and has a stationary distribution given by the πx.

Solution: Note that the transition probability of the new Markov chain is

Px,y = Qx,y min

(
πyQy,x
πxQx,y

, 1

)
.

P is aperiodic since it has a positive self-loop probability. It is irreducible if Q is irreducible.
Hence it must have a unique stationary distribution. We just need to check that πx satisfies the
time-reversibility condition πxPx,y = πyPy,x for any x, y.
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πxPx,y = πxQx,y min

(
πyQy,x
πxQx,y

, 1

)
= πyQy,x if πyQy,x < πxQx,y

else πyPy,x = πyQy,x min

(
πxQx,y
πyQy,x

, 1

)
= πxQx,y

Since πx satisfies time-reversibility, it must be the stationary distribution of P .

Problem 4. (10 points) In this problem we will use a different fingerprinting technique to solve
the pattern matching problem. The idea is to map any bit string s into a 2 × 2 matrix M(s) as
follows:

• For the empty string ε, M(ε) =

[
1 0
0 1

]
.

• M(0) =

[
1 0
1 1

]
.

• M(1) =

[
1 1
0 1

]
.

• For non-empty strings x and y, M(xy) = M(x)×M(y).

Show that this fingerprint function has the following properties.

1. M(x) is well-defined for all x ∈ {0, 1}∗.
Solution: Well defined means that for a string s, the fingerprint M(s) is unique. Suppose s
is a string of length n made up of the bits s = s0s1s2s3 . . . sn. We prove by induction that

M(s) = M(s0)M(s1)...M(sn)

(or M(ε) if n = 0). This is trivially true for n = 0. For n = k, assume the above formula
holds for n < k. Then by the definition, for any split into smaller strings s = sasb,

M(s) = M(sa)M(sb) = M(s0)M(s1)...M(sk)

using the inductive assumption and the fact that matrix multiplication is associative, so it
doesn’t matter where the split is.

2. M(x) = M(y)⇒ x = y.

Solution: Here consider the top two elements of the fingerprint matrix for s0...sn−1. Call
them a, b. Then the fingerprint matrix of s0 . . . sn−1”1” will have top two elements a, a+ b,
while the fingerprint matrix of s0 . . . sn−1”0” will have top two elements a + b, b. Therefore
by looking at which of the top two elements is larger we can determine the last bit of the
string. Then note that M(s0 . . . sn−1) = M(s0...sn) ·M(sn)−1 which follows from part (1).
Of course this requires that M(1) and M(0) were invertible, which they are. So we can go
through the fingerprint M(A) and recover A, which is all we need.
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3. For x ∈ {0, 1}n, the entries in M(x) are bounded by Fibonacci number, Fn. (Where the
Fibonacci numbers are defined by the recurrence, F0 = F1 = 1, and Fn = Fn−1 + Fn−2. You
may have to use a slightly clever induction to prove this.)

Solution: for convenience define F−1 = 0 (note this still satisfies the recurrence). Let our
inductive hypothesis be that M(x(n)) (where x(n) ∈ {0, 1}n is bounded elementwise by at
least one of the following matrices:

[
Fn Fn−1

Fn−1 Fn−2

]
[
Fn−1 Fn
Fn−2 Fn−1

]
[
Fn−2 Fn−1

Fn−1 Fn

]
[
Fn−1 Fn−2

Fn Fn−1

]

This is true for n = 1. Suppose it’s true for n = k. Then one of the following is true:

M(x(k+1)) <

[
Fk Fk−1

Fk−1 Fk−2

]
M(0) =

[
Fk+1 Fk−1

Fk Fk−2

]
M(x(k+1)) <

[
Fk−1 Fk
Fk−2 Fk−1

]
M(0) =

[
Fk+1 Fk
Fk Fk−1

]
M(x(k+1)) <

[
Fk−2 Fk−1

Fk−1 Fk

]
M(0) =

[
Fk Fk−1

Fk+1 Fk

]
M(x(k+1)) <

[
Fk−1 Fk−2

Fk Fk−1

]
M(0) =

[
Fk Fk−2

Fk+1 Fk−1

]
M(x(k+1)) <

[
Fk Fk−1

Fk−1 Fk−2

]
M(1) =

[
Fk Fk+1

Fk−1 Fk

]
M(x(k+1)) <

[
Fk−1 Fk
Fk−2 Fk−1

]
M(1) =

[
Fk−1 Fk+1

Fk−2 Fk

]
M(x(k+1)) <

[
Fk−2 Fk−1

Fk−1 Fk

]
M(1) =

[
Fk−2 Fk
Fk−1 Fk+1

]
M(x(k+1)) <

[
Fk−1 Fk−2

Fk Fk−1

]
M(1) =

[
Fk−1 Fk
Fk Fk+1

]

which proves the induction hypothesis for all natural numbers.

By considering the matrices M(x) modulo a suitable prime p, show how you would perform efficient
randomized pattern matching.
Solution: using a similar argument to fingerprinting a binary number, take the matrix mod p for
p a random prime up to T . Then an error can only occur if all 4 elements in the difference matrix
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M(x) −M(y) are divisible by p, which occurs with probability at most π(lnF (n))/π(T )), where
F (n) is the nth Fibonacci number.
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