
CS 174: Combinatorics and Discrete Probability Fall 2012

Homework 2

Due: Thursday, September 13, 2012 by 9:30am

Instructions: You should upload your homework solutions on bspace. You are strongly encour-
aged to type out your solutions using LATEX. You may also want to consider using mathematical
mode typing in some office suite if you are not familiar with LATEX. If you must handwrite your
homeworks, please write clearly and legibly. We will not grade homeworks that are unreadable. You
are encouraged to work in groups of 2-4, but you must write solutions on your own. Please review
the homework policy carefully on the class homepage.

Note: You must justify all your answers. In particular, you will get no credit if you simply write
the final answer without any explanation.

Problem 1. (Exercise 1.23 from MU) There may be several different min-cut sets in a graph. Us-
ing the analysis of the randomized min-cut algorithm, argue that there can be at most n(n− 1)/2
distinct min-cut sets.

Problem 2. The goal of this exercise is to compute uniformly random sequences of length k of
the integers {1, . . . , n} without replacement. If k = n, the sample is a permutation of 1, . . . , n.

(a) Assuming the existence of a constant-time generator that generates uniformly random real
numbers in the interval [0, 1], derive a O(n log(n))-time algorithm for computing a random
permutation of 1, . . . , n. (Hint: Think sorting.)

(b) Assuming the existence of a constant-time generator that generates uniformly random integers
in the range {1, . . . ,m} for any m, derive an O(n)-time algorithm that generates a random
permutation of 1, . . . , n. (Hint: Start with a sorting algorithm that makes O(n) data moves.)

(c) (Optional, not graded) Assuming the same random number generator as in (b) above, derive
an O(k) expected-time algorithm that generates a random sequence of length k from 1, . . . , n
without replacement.

Problem 3. (Exercise 2.2 from MU) A monkey types on a 26-letter keyboard that has lowercase
letters only. Each letter is chosen independently and uniformly at random from the alphabet. If
the monkey types 1,000,000 letters, what is the expected number of times the sequence “proof”
appears?

Problem 4. (Exercise 2.18 from MU) The following approach is often called reservoir sampling.
Suppose we have a sequence of items passing by one at a time. We want to maintain a sample of
one item with the property that it is uniformly distributed over all the items that we have seen
at each step. Moreover, we want to accomplish this without knowing the total number of items in
advance or storing all of the items that we see.

1



Consider the following algorithm, which stores just one item in memory at all times. When the
first item appears, it is stored in the memory. When the kth item appears, it replaces the item in
memory with probability 1/k. Explain why this algorithm solves the problem.

Problem 5. (Exercise 2.22 from MU) Let a1, a2, . . . , an be a list of n distinct numbers. We say
that ai and aj are inverted if i < j but ai > aj . The Bubblesort sorting algorithms swaps pairwise
adjacent inverted numbers in the list until there are no more inversions, so the list is in sorted
order. Suppose that the input to Bubblesort is a random permutation, equally likely to be any of
the n! permutations of n distinct numbers. Determine the expected number of inversions that need
to be corrected by Bubblesort.

Problem 6. (Exercise 2.32 from MU) You need a new staff assistant, and you have n people to
interview. You want to hire the best candidate for the position. When you interview a candidate,
you can give them a score, with the highest score being the best and no ties being possible. You
interview the candidates one by one. Because of your company’s hiring practices, after you interview
the kth candidate, you either offer the candidate the job before the next interview or you forever
lose the chance to hire that candidate. We suppose the candidates are interviewed in a random
order, chosen uniformly at random from all n! possible orderings.

We consider the following strategy. First, interview m candidates but reject them all; these
candidates give you an idea of how strong the field is. After the mth candidate, hire the first
candidate you interview who is better than all of the previous candidates you have interviewed.

(a) Let E be the event that we hire the best assistant, and let Ei be the event that ith candidate
is the best and we hire him. Determine Pr(Ei), and show that

Pr(E) =
m

n

n∑
j=m+1

1

j − 1
.

(b) Bound
∑n

j=m+1(1/(j − 1)) to obtain

m

n
(lnn− lnm) ≤ Pr(E) ≤ m

n
(ln(n− 1)− ln(m− 1)).

(c) Show that m(lnn − lnm)/n is maximized when m = n/e, and explain why this means that
Pr(E) ≥ 1/e for this choice of m.

2


