CS 174: Combinatorics and Discrete Probability Fall 2012

Homework 3

Problem 1. (Ezercise 3.5 from MU) Given any two random variables X and Y, by the linearity
of expectation we have E[X — Y] = E[X]| — E[Y]. Prove that, when X and Y are independent,
Var[X — Y] = Var[X]| + Var[Y].

Solution: From the definition of variance, we write

Var[X — Y] =E[(X —Y))] —-E[X - Y)?
= E[X2 —2XY +Y? — (E[X] - E[Y])?
= E[X?] - 2E[XY] + E[Y?] — (E[X]? — 2E[X]E[Y] + E[Y]?)
= E[X?] - E[X)? + E[Y?] - E[Y]?,

since by independence E[XY] = E[X]E[Y]. Finally, we see that

Var[X — Y| = Var[X] 4 Var[Y]

Problem 2. (Ezercise 3.15 from MU) Let the random variable X be representable as a sum of
random variables X = )" | X;. Show that, if E[X;X;] = E[X;]E[X;] for every pair of ¢ and j with
1 <i<j<n,then Var[X] =", Var[X;].

Solution: From the definition of variance, we write

Var[X] = E (ix,-—ﬂz liXDQ
=K ZZX E[X:))(X; — E[X;])
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:zn:Var(Xi)—FQZE[Xin—E[ X)X, — X,E[X;] + E[X;]E[X]]
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= Z Var(X;)
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Since

EX;X; — E[X;]X; — X,E[X;] + E[X;]E[X;]] = 2E[X;]E[X;] — 2E[X;]E[X;] =0



Problem 3. (Exercise 3.19) Let Y be a non-negative integer-valued random variable with positive
expectation. Prove

< PrlY #0] <E[Y]

Solution: First, we consider the upper bound. By Markov’s inequality, we have
Pr[Y # 0] =Pr[Y > 1] < E[Y]

Consider the conditional X = Y|Y > 0. Recall that Jensen’s inequality tells us that for any
random variable X,

E[X]* <E[X?]
Then, we have that

E[Y|Y # 0] <E[Y?]Y # 0]

Now we compute each side of the above inequality. For the left-hand, side we have
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For the right-hand side, we have

E[Y?|Y #0] = }:mm =Y #0)

Putting everything together, we have
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which concludes the proof.
Alternatively, we can use the Cauchy-Schwartz inequality:

Problem 4. (Exercise 3.20 from MU)

(a)

Chebyshev’s inequality uses the variance of a random variable to bound its deviation from
its expectation. We can also use higher moments. Suppose that we have a random variable
X and an even integer k for which E[(X — E[X])*] is finite. Show that

1
Pr (\X ~E[X]| > t{/E[(X - E[X])’ﬂ) <
Solution: Let Y = (X —E[X])*. By Markov’s inequality we have Pr[Y > t*E[Y]] < % -

tik. Now, we have

Pr [Y > tkE[Y]] = Pr [\’“/17 > t’\“/m} = Pr [yX —E[X]| > t’\“/IE[(X - IE[X])’C}}

where the first step is true since we take the kth root of both sides of the inequality, and the
second step is true since the kth root of a number, where k is even, is the absolute value.
Putting this together with the Markov’s inequality, we have

1

Pr [|X —E[X]| > t{“/E[(X - IE[X])’“]} <

Why is it difficult to derive a similar inequality when k is odd?

Solution: Since X is any random variable, the value (X — E[X])* may be negative for odd
values k. (In fact it can’t be non-negative unless X is almost surely constant). Therefore
Markov’s inequality would not apply.

Problem 5. (Ezercise 3.21 from MU) A fixed point of a permutation 7 : [1,n] — [1,n] is a value for
which 7(z) = z. Find the variance in the number of fixed points of a permutation chosen uniformly
at random from all permutations. (Hint: Let X; be 1 if 7(i) = 4, so that > ; X; is the num-
ber of fixed points. You cannot use linearity to find Var[y ;" ; X;], but you can calculate it directly.)

Solution: Let X; be an indicator random variable for the event that 7 (i) = i, making i a fixed
point, i.e. X; =1 when i is a fixed point, and X; = 0 otherwise. We can easily compute the E[X].
Let X = )" ; be the number of fixed points.

First, we notice that Var[X] = E[X?] —E[X]?. Next, we compute the expectation of the number
of fixed points. Since the E[X;] = Pr[X; = 1] = 1/n, we have
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Now, we compute the first term in the variance,
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The third line follows since for indicator variables XZ»2 = X;. The forth line is obtained by using
conditional expectation, conditioning on the event X; = 1. The fifth line comes from knowing that
Pr[X; = 1] = 1/n, and conditioning on X; = 1, there are n — 1 choices for mapping element j,
yielding 1/(n — 1) as the conditional probability of j being a fixed point.

Putting everything together we have

VarlX]=2-1=1

Problem 6. (Ezercise 3.25 from MU) The weak law of large numbers states that, if X7, X, X3, ...
are independent and identically distributed random variables with mean p and standard deviation
o, then for any constant € > 0 we have

X+ X e+ X,
limPr(‘ UL e —u‘>6>:0.

n—00 n

Use Chebychev’s inequality to prove the weak law of large numbers.
Solution:

n
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Var -

So by Chebychev’s inequality,
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