Problem 1. (Exercise 3.5 from MU) Given any two random variables X and Y, by the linearity of expectation we have $E[X - Y] = E[X] - E[Y]$. Prove that, when X and Y are independent, $\text{Var}[X - Y] = \text{Var}[X] + \text{Var}[Y]$.

Solution: From the definition of variance, we write

$$= E[X^2 - 2XY + Y^2] - (E[X] - E[Y])^2$$
$$= E[X^2] - E[X]^2 + E[Y]^2 - E[Y]^2,$$

since by independence $E[XY] = E[X]E[Y]$. Finally, we see that $\text{Var}[X - Y] = \text{Var}[X] + \text{Var}[Y]$.

Problem 2. (Exercise 3.15 from MU) Let the random variable X be representable as a sum of random variables $X = \sum_{i=1}^{n} X_i$. Show that, if $E[X_iX_j] = E[X_i]E[X_j]$ for every pair of i and j with $1 \leq i < j \leq n$, then $\text{Var}[X] = \sum_{i=1}^{n} \text{Var}[X_i]$.

Solution: From the definition of variance, we write

$$\text{Var}[X] = E \left[\left(\sum_{i=1}^{n} X_i - E \left[\sum_{i=1}^{n} X_i \right] \right)^2 \right]$$
$$= E \left[\sum_{i=1}^{n} \sum_{j=1}^{n} (X_i - E[X_i])(X_j - E[X_j]) \right]$$
$$= E \left[\sum_{i=1}^{n} (X_i - E[X_i])^2 + 2 \sum_{i<j} (X_i - E[X_i])(X_j - E[X_j]) \right]$$
$$= \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i<j} E[X_iX_j - E[X_i]X_j - X_iE[X_j] + E[X_i]E[X_j]]$$
$$= \sum_{i=1}^{n} \text{Var}(X_i)$$

Since

$$E[X_iX_j - E[X_i]X_j - X_iE[X_j] + E[X_i]E[X_j]] = 2E[X_i]E[X_j] - 2E[X_i]E[X_j] = 0$$

1
Problem 3. (Exercise 3.19) Let Y be a non-negative integer-valued random variable with positive expectation. Prove

$$\frac{\mathbb{E}[Y]^2}{\mathbb{E}[Y^2]} \leq \Pr[Y \neq 0] \leq \mathbb{E}[Y]$$

Solution: First, we consider the upper bound. By Markov’s inequality, we have

$$\Pr[Y \neq 0] = \Pr[Y \geq 1] \leq \mathbb{E}[Y]$$

Consider the conditional $X = Y\mid Y > 0$. Recall that Jensen’s inequality tells us that for any random variable X,

$$\mathbb{E}[X]^2 \leq \mathbb{E}[X^2]$$

Then, we have that

$$\mathbb{E}[Y\mid Y \neq 0]^2 \leq \mathbb{E}[Y^2\mid Y \neq 0]$$

Now we compute each side of the above inequality. For the left-hand side we have

$$\mathbb{E}[Y\mid Y \neq 0]^2 = \left(\sum_{i=0}^{\infty} i \Pr[Y = i\mid Y \neq 0]\right)^2$$

$$= \left(\sum_{i=0}^{\infty} i \frac{\Pr[Y = i, Y \neq 0]}{\Pr[Y \neq 0]}\right)^2$$

$$= \left(\sum_{i=1}^{\infty} i \frac{\Pr[Y = i]}{\Pr[Y \neq 0]}\right)^2$$

$$= \frac{\mathbb{E}[Y]^2}{\Pr[Y \neq 0]^2}.$$

For the right-hand side, we have

$$\mathbb{E}[Y^2\mid Y \neq 0] = \sum_{i=0}^{\infty} i^2 \Pr[Y = i\mid Y \neq 0]$$

$$= \sum_{i=1}^{\infty} i^2 \Pr[Y = i]$$

$$= \frac{\mathbb{E}[Y^2]}{\Pr[Y \neq 0]}.$$

Putting everything together, we have

$$\frac{\mathbb{E}[Y]^2}{\Pr[Y \neq 0]^2} \leq \frac{\mathbb{E}[Y^2]}{\Pr[Y \neq 0]} \leq \mathbb{E}[Y].$$
which concludes the proof.

Alternatively, we can use the Cauchy-Schwartz inequality:

\[
E[YI[Y > 0]]^2 \leq E[Y^2]E[I[Y > 0]^2] = E[Y^2] \Pr[Y > 0]
\]

Problem 4. (Exercise 3.20 from MU)

(a) Chebyshev’s inequality uses the variance of a random variable to bound its deviation from its expectation. We can also use higher moments. Suppose that we have a random variable \(X \) and an even integer \(k \) for which \(E[(X - E[X])^k] \) is finite. Show that

\[
\Pr \left(|X - E[X]| \geq t \sqrt[k]{E[(X - E[X])^k]} \right) \leq \frac{1}{t^k}
\]

Solution: Let \(Y = (X - E[X])^k \). By Markov’s inequality we have \(\Pr[Y \geq tE[Y]] \leq \frac{E[Y]}{t^kE[Y]} = \frac{1}{t^k} \). Now, we have

\[
\Pr \left[Y \geq tE[Y] \right] = \Pr \left[\sqrt[k]{Y} \geq t \sqrt[k]{E[Y]} \right] = \Pr \left[|X - E[X]| \geq t \sqrt[k]{E[(X - E[X])^k]} \right]
\]

where the first step is true since we take the \(k \)th root of both sides of the inequality, and the second step is true since the \(k \)th root of a number, where \(k \) is even, is the absolute value. Putting this together with the Markov’s inequality, we have

\[
\Pr \left[|X - E[X]| \geq t \sqrt[k]{E[(X - E[X])^k]} \right] \leq \frac{1}{t^k}
\]

(b) Why is it difficult to derive a similar inequality when \(k \) is odd?

Solution: Since \(X \) is any random variable, the value \((X - E[X])^k \) may be negative for odd values \(k \). (In fact it can’t be non-negative unless \(X \) is almost surely constant). Therefore Markov’s inequality would not apply.

Problem 5. (Exercise 3.21 from MU) A fixed point of a permutation \(\pi : [1, n] \to [1, n] \) is a value for which \(\pi(x) = x \). Find the variance in the number of fixed points of a permutation chosen uniformly at random from all permutations. (Hint: Let \(X_i \) be 1 if \(\pi(i) = i \), so that \(\sum_{i=1}^{n} X_i \) is the number of fixed points. You cannot use linearity to find \(\text{Var}\left[\sum_{i=1}^{n} X_i\right] \), but you can calculate it directly.)

Solution: Let \(X_i \) be an indicator random variable for the event that \(\pi(i) = i \), making \(i \) a fixed point, i.e. \(X_i = 1 \) when \(i \) is a fixed point, and \(X_i = 0 \) otherwise. We can easily compute the \(E[X] \).

Let \(X = \sum_{i=1}^{n} X_i \) be the number of fixed points.

First, we notice that \(\text{Var}[X] = E[X^2] - E[X]^2 \). Next, we compute the expectation of the number of fixed points. Since the \(E[X_i] = \Pr[X_i = 1] = 1/n \), we have

\[
E[X] = E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} (1/n) = 1
\]
Now, we compute the first term in the variance,

\[\mathbb{E}[X^2] = \mathbb{E} \left(\left(\sum_{i=1}^{n} X_i \right)^2 \right) \]

\[= \left(\sum_{i=1}^{n} \mathbb{E}[X_i^2] \right) + \left(\sum_{i=1}^{n} \sum_{j \neq i} \mathbb{E}[X_i X_j] \right) \]

\[= \left(\sum_{i=1}^{n} \mathbb{E}[X_i] \right) + \left(\sum_{i=1}^{n} \sum_{j \neq i} \mathbb{E}[X_i X_j] \right) \]

\[= 1 + \left(\sum_{i=1}^{n} \sum_{j \neq i} \mathbb{E}[X_i = 1] \mathbb{E}[X_i X_j|X_i = 1] \right) \]

\[= 1 + \left(\sum_{i=1}^{n} \sum_{j \neq i} \frac{1}{n(n-1)} \right) \]

\[= 1 + 1 \]

\[= 2 \]

The third line follows since for indicator variables \(X_i^2 = X_i \). The forth line is obtained by using conditional expectation, conditioning on the event \(X_i = 1 \). The fifth line comes from knowing that \(\Pr[X_i = 1] = 1/n \), and conditioning on \(X_i = 1 \), there are \(n - 1 \) choices for mapping element \(j \), yielding \(1/(n - 1) \) as the conditional probability of \(j \) being a fixed point.

Putting everything together we have

\[\text{Var}[X] = 2 - 1 = 1 \]

Problem 6. *(Exercise 3.25 from MU)* The weak law of large numbers states that, if \(X_1, X_2, X_3, \ldots \) are independent and identically distributed random variables with mean \(\mu \) and standard deviation \(\sigma \), then for any constant \(\epsilon > 0 \) we have

\[\lim_{n \to \infty} \Pr \left(\left| \frac{X_1 + X_2 + \cdots + X_n}{n} - \mu \right| > \epsilon \right) = 0. \]

Use Chebychev’s inequality to prove the weak law of large numbers.

Solution:

\[\text{Var} \left(\frac{X_1 + X_2 + \cdots + X_n}{n} \right) = \frac{\sigma^2}{n} \]

So by Chebychev’s inequality,

\[\Pr \left(\left| \frac{X_1 + X_2 + \cdots + X_n}{n} - \mu \right| > \epsilon \right) \leq \frac{\sigma^2}{n \epsilon^2} \]

\[\to 0 \quad \text{as} \quad n \to \infty \]