
CS 174: Combinatorics and Discrete Probability Fall 2012

Homework 5

Due: Thursday, October 4, 2012 by 9:30am

Instructions: You should upload your homework solutions on bspace. You are strongly encour-
aged to type out your solutions using LATEX. You may also want to consider using mathematical
mode typing in some office suite if you are not familiar with LATEX. If you must handwrite your
homeworks, please write clearly and legibly. We will not grade homeworks that are unreadable. You
are encouraged to work in groups of 2-4, but you must write solutions on your own. Please review
the homework policy carefully on the class homepage.

Note: You must justify all your answers. In particular, you will get no credit if you simply write
the final answer without any explanation.

Problem 1. (Exercise 5.9 from MU – 5 points) Consider the probability that every bin receives
exactly one ball when n balls are thrown randomly into n bins.

(a) Give an upper bound on this probability using the Poisson approximation.

(b) Determine the exact probability of this event.

Problem 2. (Exercise 5.13 from MU – 5 points) Let Z be a Poisson random variable with mean
µ, where µ ≥ 1 is an integer. First, show that Pr[Z = µ+h] ≥ Pr[Z = µ−h− 1] for 0 ≤ h ≤ µ− 1,
and use this to conclude that Pr[Z ≥ µ] ≥ 1/2.

Problem 3 (Exercise 5.14 from MU – 5 points) Let Y1, . . . , Yn be Poisson random variables with
mean µ(= m/n). Let X1, X2, . . . , Xn be the random variables denoting the number of balls in each
bin when m balls are thrown in n bins. In class, we showed that for any non-negative function, f ,

E[f(Y1, . . . , Yn)] ≥ E[f(X1, . . . , Xn)] Pr[
n∑

i=1

Yi = m]

When f is monotonically increasing, show that

E[f(Y1, . . . , Yn)] ≥ E[f(X1, . . . , Xn)] Pr[

n∑
i=1

Yi ≥ m]

Use this and problem 2 to conclude that E[f(X1, . . . , Xn)] ≤ 2E[f(Y1, . . . , Yn)] (see Theorem 5.10).

Problem 4 (5 points) Let X1, . . . , Xn be geometric random variables with mean 2. Let X =∑n
i=1Xi and δ > 0,

(a) Derive a bound on Pr[X ≥ (1+δ)2n] by applying a Chernoff bound to a squence of (1+δ)(2n)
independent coin tosses.
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(b) Consider the quantity E[etX ] and derive a Chernoff bound for Pr[X ≥ (1 + δ)(2n)] using
Markov’s inequality for the random variable etX .

(c) Which bound is better?

Problem 5. (Exercise 4.25 from MU - 10 points) In this exercise, we design a randomized algorithm
for the following packet routing problem. We are given a network that is an undirected connected
graph, G, where nodes represent processors and the edges between the nodes represent wires. We
are also given a set of N packets to route. For each packet we are given a source node, a destination
node, and the exact route (path in the graph) that the packet should take from the source to the
destination. (We may assume that there are no loops in the path.) In each time step, at most one
packet can traverse an edge. A packet can wait at any node during any time step, and we assume
unbounded queue sizes at each node.

A schedule for a set of packets specifies the timing for the movement of packets along their
respective routes. That is, it specifies which packet should move and which should wait at each
time step. Our goal is to produce a schedule for the packets that tries to minimize the total time
and the maximum queue size needed to route all the packets to their destinations.

(a) The dilation, d, is the maximum distance travelled by any packet. The congestion, c, is the
maximum number of packets that must traverse a single edge during the entire course of the
routing. Argue that the time required for any schedule should be at least Ω(c + d). (Hint:
Show that the time should be at least max{c, d} which is Ω(c+ d).)

(b) Consider the following unconstrained schedule, where many packets may traverse an edge dur-
ing a single time step. Assign each packet an integral delay chosen randomly, independently,
and uniformly from the interval [1, dαc/ log(Nd)e], where α is a sufficiently large constant. A
packet that is assigned a delay of x waits in its source node for x time steps; then it moves
on to its final destination through its specified route without ever stopping. Give an upper
bound on the probability that more than O(log(Nd)) packets use a particular edge e at a
particular time step t.

(c) Again using the unconstrained schedule of part (b), show that the probability that more
than O(log(Nd)) packets pass through any edge at any time step is at most 1/(Nd) for a
sufficiently large α.

(d) Use the unconstrained schedule to devise a simple randomized algorithm that, with high
probability, produces a schedule of length O(c+ d log(Nd)) using queues of size O(log(Nd))
and following the constraint that at most one packet crosses an edge per time step. (By high
probability, we mean 1−O(1/N).)
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