CS 174: Combinatorics and Discrete Probability

Homework 7 Solutions

Fall 2012

Problem 1. (Ezercise 6.10 from MU - 6 points) A family of subsets F of {1,2,...
an antichain if there is no pair of sets A and B in F satisfying A C B.

(a)

(b)

Given an example of F where |F| = (Ln% J)'

Solution: Choose every subset of size [n/2].

Let fi be the number of sets in F with size k. Show that
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Zﬁ_l.

k=0 \k

,n} is called

(Hint: Choose a random permutation of the numbers from 1 to n, and let X} = 1 if the first
k numbers in your permutation yeild a set in F. If X = Y | X}, what can you say about

X7?)

Solution: Following the hint, choose a random permutation of (1,

first & numbers yield a set in F, and let X = >~ Xj.

n). Let X =1 if the

Note that Pr(X; =1) = (ka) Furthermore, for only one value of k£ can X = 1, which means
k

that E[X] < 1. Therefore,

Argue that |F| < (L /2j) for any antichain F.

Solution: For a fixed n, the binomial coefficient is maximized at (Ln% J)' Therefore,

ka-zm

(Ln/2 k=0

which implies that

The result follows since [F| = Y"1 fk-




Problem 2. (Exercise 6.14 from MU — 6 points) Consider a graph in G, ,, with p = 1/n. Let X
be the number of triangles in the graph, where a triangle is a clique with three edges. Show that

Pr(X>1)<1/6
and that
1i_>m Pr(X >1)>1/7

(Hint: Use the conditional expectation inequality.)

Solution: Let C’l,...,C’(n) be an enumeration of all subsets of 3 vertices in the graph. Let
3

X = Zfi)l X;, where X —i is 1 if C; is a triangle and 0 otherwise. We have E[X;] = Pr[X; = 1] = p?,

so E[X] = (g) p3. So by Markov’s inequality,

pilx = 1< () = () am? < s

To use the conditional expectation inequality, we mimic the argument from the previous part

to get
-3 ~3 -3
E[X]Xizl]:1+<n3 >p3+<n2 >p3+<"1 )p2

and then show

(5)
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PrlX > 1] > E;E[X[!X:]l]
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as n — oo

Problem 3 (Ezercise 6.18 from MU — 6 points) Let G = (V, E) be an undirected graph and suppose
each v € V is associated with a set S(v) of 8 colours, where r > 1. Suppose, in addition, that for
each v € V and ¢ € S(v) there are at most r neighbours u of v such that ¢ lies in S(u). Prove that
there is a proper colouring of G assigning to each vertex v a colour from its class S(v) such that,
for any edge (u,v) € E, the colours assigned to u and v are different. You may want to let Ay, .
be the event that u and v are both coloured with colour ¢ and then consider the family of such events.

Solution: The solution to this problem is an application of the Lovaxa local lemma. Let us check
the three requirements necessary to apply the lemma:

(a) Pr(Auu,.c) < Pr(uis color ¢ | v is color ¢) Pr(v is color ¢) < & - & = 641T2



(b) Ay, may only depend on events A, . » where either u = u' or v = v'. Note that u has
at most 87 colours, and hence at most 872 neighbours with which it can share a colour (this
includes v). A symmetric argument holds for v. However, this means that the total number
of events that A, , . can be dependent on is at most 1672 (note that this is despite the double
counting A,y o).

(c) 4dp <4-16r% - o5 = 1.

So applying the Lovasz local lemma, we have:

Pr (ﬂ Au,u,c) >0

u,v,c
In other words, there exists a coloring such that no neighboring vertices have the same color.
Problem 4 (12 points) In this problem we will see that the value p = In(n)/n is a threshold

property that a random graph in the G, , model has an isolated vertex, i.e. a vertex with no
adjacent edges. That is, we will prove that

0 ifp= w(ln(n))

n

1 ifp= o(ln(")) '

n

n—o0

lim Pr[G has an isolated vertex] = {

(a) Let X be the random variable denoting the number of isolated vertices in G. Write down the
expectation of X as a function of n and p.

Solution: Let X; be the r.v. indicating whether vertex ¢ is isolated. Then

E[Xi]=(1-p)""

and by linearity of expectation, E[X] = n(1 — p)»~ 1.

(b) Show that E[X] — 0 for p = w(ln(n)), and that E[X] — oo for p = o(ln(")).

n n

Solution: Write p =a - 1“7" Note that

E[X] =n(1-p)""

< lnn>"_1
=n|l—-a —
n

N ne—alnn
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Inn

The case p = o (T) is equivalent to a = o(1), and thus

E[X] ~n'7M - o0

Inn

The second case, p = w (T) is equivalent to a = w(1), and thus

E[X] ~n~ @11 0



(c) Deduce from part (b) that Pr[G has an isolated vertex] — 0 for p = w(In(n)/n).
Solution: By Markov’s inequality we have Pr[X > 1] < E[X], which by part (b) goes to
zero in the case p = w (22). Hence Pr[X > 0] — 0 as required.

(d) Compute Var(X) as a function of n and p.

Solution: For any i # j, E[X;X;] = (1 —p)**~3 (there are 2n — 3 possible edges adjacent to
either ¢ or j). Hence

EX? =) E[X:X;] =n(l-p)"" +n(n—1)(1—p)*?
i,J
Therefore
Var[X] = E[X?] — E[z]* = n(1 = p)" " +n(1 —p)*"*(np — 1)

(e) Deduce from parts (b) and (d) that Pr[G has an isolated vertex] — 1 for p = o(In(n)/n).
Solution: By Chebyshev’s inequality,

Pr[X = 0] < Pr[|X — E[X]| > E[X]]

Inn
n
zero. And the second term is n?’f:;) < %,
Hence we have Pr[X = 0] — 0, i.e. Pr[X > 0] — 1 as required.

) we know from part (b) that E[X] — oo, so the first term here goes to
lnn)

n .

Now forpzo(

which certainly goes to zero for p = 0(



