Problem 1. (8 points) We consider a problem motivated by recommendation systems used by online merchants such as Amazon and Netflix. Given two sets of integers A, B of size n, we would like to quickly determine if $A = B$, or if $|A \cap B|$ is very small, say $|A \cap B| < 0.01n$. (In the intermediate case, where $A \cap B$ is of moderate size, we do not care what the output is.) In the case of Amazon’s recommendation system, A and B could be the list of books purchased by different consumers, and n could be very large.

(a) Sketch a simple deterministic algorithm that computes $|A \cap B|$ exactly using $O(n \log n)$ comparisons.

Solution: Sort both sets A and B and compare. Once A and B are sorted, we can easily compute $A \cap B$ in linear time.

Our aim is to beat this algorithm, using randomization and exploiting the fact that we only want to distinguish the case where $A = B$ from the case where they are very different. Specifically, we seek an algorithm with the following properties:

- if $A = B$, then the algorithm should output yes with probability at least $3/4$.
- if $|A \cap B| \leq 0.01n$, then the algorithm should output no with probability at least $3/4$.
- the algorithm uses $O(\sqrt{n} \log n)$ comparisons.

(The value $3/4$ here is for convenience only; it can easily be boosted to value $1 - \delta$ for any desired δ using only $O(\log(1/\delta))$ repeated trials.)

Here is the proposed algorithm, where the constant c is to be determined:

1. choose a subset X of A by picking each element of A independently with probability c/\sqrt{n}.
2. choose a subset Y of B by picking each element of B independently with probability c/\sqrt{n}.
3. if $|X| > 2c\sqrt{n}$ or $|Y| > 2c\sqrt{n}$, output yes.
4. compute $|X \cap Y|$; if $|X \cap Y| \geq 0.1c^2$, output yes, else output no.
In the rest of this problem, we will show that the algorithm achieves the required properties for a sufficiently large constant c.

(b) Show that the algorithm does indeed use only $O(\sqrt{n} \log n)$ comparisons, assuming that c is constant.

Solution: We only have to compute $|X \cap Y|$ when $|X|, |Y| \leq 2c\sqrt{n}$, in which case we only need $O(\sqrt{n} \log n)$ comparisons.

(c) Suppose $A = B$. Show that the algorithm outputs yes with probability at least $1 - e^{-0.81c^2/2}$.

Solution: Suppose $A = B$. Fix an element s in $A \cap B$. Then, $Pr[s \in X \land s \in Y] = c^2/n$. We may then write $|X \cap Y|$ as the sum of independent 0-1 r.v.’s, one for each s in $A \cap B$. Hence, by linearity of expectation, $E[|X \cap Y|] = c^2$. Applying a Chernoff bound with $\delta = 0.9$ and $\mu = c^2$, we obtain $Pr[|X \cap Y| \leq 0.1c^2] \leq e^{-0.81c^2/2}$.

(d) Suppose $|A \cap B| \leq 0.01n$. Show that the algorithm outputs yes with probability at most $e^{-0.81c^2/11} + 2e^{-\Omega(\sqrt{n})}$.

Solution: Suppose $|A \cap B| \leq 0.01n$. Then, $E[|X \cap Y|] \leq 0.01c^2$. Again by a Chernoff bound with $\delta = 9$ and $\mu = 0.01c^2$, we obtain $Pr[|X \cap Y| \geq 0.1c^2] \leq e^{-0.81c^2/11}$. Also, writing X as the sum of n independent 0-1 r.v.’s and applying a Chernoff bound with $\delta = 1$ and $\mu = c\sqrt{n}$, we have $Pr[|X| > 2c\sqrt{n}] = e^{-\Omega(\sqrt{n})}$. Similarly, we have $Pr[|Y| > 2c\sqrt{n}] = e^{-\Omega(\sqrt{n})}$. The sum of these three probabilities is an upper bound on the error probability.

(c) Indicate briefly how to choose the constant c so as to achieve the 1/4 error probabilities specified earlier. (You do not need to actually perform the calculation.)

Solution: It suffices to pick c such that $\max\{e^{-0.81c^2}, e^{-0.81c^2/11} + 2e^{-\Omega(\sqrt{n})}\} < 1/4$.

Problem 2. (Exercise 7.2 from MU - 5 points) Consider the two-state Markov chain with the following transition matrix.

$$P = \begin{bmatrix} p & 1-p \\ 1-p & p \end{bmatrix}.$$

Find a simple expression for $P_{0,0}^t$.

Solution: We can observe that $P_{0,0}^{t+1} = pP_{0,0}^t + (1-p)P_{0,1}^t$ and $P_{0,1}^t = 1 - P_{0,0}^t$. From this, we can derive the recursion

$$P_{0,0}^t = (2p - 1)P_{0,0}^{t-1} + (1-p)$$

whose solution is

$$P_{0,0}^t = (2p - 1)^t + (1-p) \sum_{s=0}^{t-1}(2p - 1)^s = \frac{1+(2p-1)^t}{2}$$

This can be verified by plugging the solution back into the recursion.

There is a second way to do this problem. To be in state 0 at time t, either we never moved from state 0, or we took a number of trips to state 1 and came back. Hence, the number of steps of transition between the two states has to be even. Note that no matter what state we are in, $(1-p)$ is the probability of changing to the other state, and p is the probability of staying in the same state. Hence, we need only the odd terms in $(p + (1-p))^t$, (i.e., all the terms where $(1-p)$ is raised to an even power). This allows us to derive the following equation:
\[P_{0,0}^t = \sum_{i=0}^{\lfloor \frac{(t+1)}{2} \rfloor} B_{2i+1}(p, 1-p, t) \]

where \(B_k(a, b, t) = \binom{t}{k-1} a^{t-k+1} b^{k-1} \) is the \(k \)th term in the binomial expansion of \((a + b)^t\). This formula can be verified by calculating the \((0, 0)\)th element of the matrix \(P^t \).

Problem 3. *(Exercise 7.3 from MU – 5 points)* Prove that the communicating relation defines an equivalence relation.

Solution:

1. Reflexive: by definition, \(P^0 i, i = 1 > 0 \) so \(i \leftrightarrow i \).

2. Symmetric: if \(i \leftrightarrow j \), then \(i \) and \(j \) are both accessible from each other, so \(j \leftrightarrow i \).

3. Transitive: \(i \leftrightarrow j \) and \(j \leftrightarrow k \) implies that for some \(n \), \(P^n_{i,j} > 0 \) and for some \(m \), \(P^m_{j,k} > 0 \). Thus \(P^{m+n}_{i,k} \geq P^n_{i,j} P^m_{j,k} > 0 \) and so \(i \leftrightarrow k \).

Problem 4. *(Exercise 7.6 from MU – 5 points)* In studying the 2-SAT algorithm, we considered a 1-dimensional random walk with a completely reflecting boundary at 0. That is, whenever position 0 is reached, with probability 1 the walk moves to position 1 at the next step. Consider now a random walk with a partially reflecting boundary at 0. Whenever position 0 is reached, with probability 1/2 the walk moves to position 1 and with probability 1/2 the walk stays at 0. Everywhere else the random walk moves either up or down 1, each with probability 1/2. Find the expected number of moves to reach \(n \), starting from position \(i \) and using a random walk with a partially reflecting boundary.

Solution: Let \(h_i \) denote the expected hitting time to \(n \) from position \(i \). We can write down the following recurrence equations:

\[
\begin{align*}
h_0 &= \frac{1}{2} h_0 + \frac{1}{2} h_1 + 1 \\
h_1 &= \frac{1}{2} h_0 + \frac{1}{2} h_2 + 1 \\
h_2 &= \frac{1}{2} h_1 + \frac{1}{2} h_3 + 1 \\
& \quad \vdots \\
h_{n-1} &= \frac{1}{2} h_{n-2} + \frac{1}{2} h_n + 1 \\
h_n &= 0
\end{align*}
\]

From these equations, we can derive that \(h_i = h_{i+1} + 2(i + 1) \). Plugging in the boundary condition of \(h_n = 0 \), we get

\[h_i = (n + i + 1)(n - i) \]

Problem 5. *(7 points)* A property of states in a Markov chain is called a **class property** if, whenever states \(i \) and \(j \) communicate, \(i.e. \) each is reachable from the other), either both states have the property or neither do. Show that being periodic is a class property.
Solution:

Suppose i has period Δ. Since i and j communicate, there must be a path from i to j (call this P) and from j to i (call this Q) such that the length of the loop PQ is a multiple of Δ. Given any loop R from j back to j, we know the length of PRQ is also a multiple of Δ so R must have length a multiple of Δ too. Thus j must be periodic with period Δ' which is a multiple of Δ.

The argument works the same with i and j exchanged, so Δ must also be a multiple of Δ'. Thus $\Delta = \Delta'$.