
CS 174: Combinatorics and Discrete Probability Fall 2012

Midterm 2 – Solutions

Problem 1. (Total 20 points)

For the questions 1-4, read the statement of the problem carefully and circle either TRUE or
FALSE. You will get 2 points for a correct answer and 0 points for an incorrect answer.

For questions 5-7, one or more of the choices may be correct. For each choice you will get 1 point
if your selection of the choice is correct. Thus, each of the questions is worth 4 points total. There
is no negative marking.

1. Let Xn be a sequence of random variables that depend on some object of size n (e.g. number
of independent sets in Gn,1/2). Then, if it is the case that limn→∞ E[Xn] =∞, it must be the
case that limn→∞ Pr[Xn = 0] = 0.

TRUE FALSE

Solution. The correct answer is FALSE. It is possible to have a random variable, X, with
Pr[X = 0] = 0.99 and yet, E[X] =∞.

2. A finite Markov Chain may have infinitely many stationary distributions.

TRUE FALSE

Solution. The correct answer is TRUE. If the transition graph is disconnected, then the
number of stationary distributions may be infinite. For example, in the Markov chain in
Problem 1-5.

3. Let φ be a 3-SAT formula, in which each clause has exactly 3 variables, and any clause shares
a variable with at most 2 other clauses. Then φ always has a satisfying assignment.

TRUE FALSE

Solution. The correct answer is TRUE. Let Ei be the event that the ith clause is not satisfied
by a random assignment. Then, p = Pr(Ei) = 1/8. The maximum degree of the dependency
graph on events Ei is 2 (since each clause shares a variable with at most 2 other clauses).
Thus, 4pd ≤ 1 and by Lovasz Local Lemma, it is guaranteed that Pr(∩iĒi) > 0, and hence
there must be a satisfying assignment.

4. If a state, i, of a Markov Chain has period 3, then there must be a cycle containing i of length
3 in the transition graph.

TRUE FALSE
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Solution. The correct answer is FALSE. It is possible, for example, that there is a cycle of
length 6 and another of length 9, containing the state i. The period of state i would still be 3.

5. Observe the Markov chain in the figure below. Which of the following are valid stationary
distributions? More than one answer may be correct.
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3/4
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1/4

1

1

1

(a) (1/5, 1/5, 1/5, 1/5, 1/5)

(b) (1/4, 3/4, 0, 0, 0)

(c) (0, 0, 1/3, 1/3, 1/3)

(d) (1/12, 1/4, 2/9, 2/9, 2/9)

Solution. The correct answers are (b), (c), and (d). This can be verified easily. Alternatively,
if we restrict attention to states 1 and 2, the stationary distributions is (1/4, 3/4, 0, 0, 0) and
if we restrict attention to states 3, 4, and 5, the stationary distribution is (0, 0, 1/3, 1/3, 1/3).
Then, any convex combination of the above two states is also a stationary distribution.

6. Which of the following statements is true? You are given a graph, G. Then some edges are
added to G, by some (not necessarily random) process, to obtain a graph G′.

(a) The cover time of G′ is larger than the cover time of G.

(b) The cover time of G′ is smaller that the cover time of G.

(c) The cover time of G′ is the same as the cover time of G.

(d) The cover time of G′ may be larger or smaller than G depending on how the edges are
added.

Solution. The only correct answer is (d). It is indeed possible to increase the cover time by
adding edges. For example, start with the line graph, (a path of length n), and add edges
to make this into a lollipop graph. Then the cover time increases from Θ(n2) to Θ(n3). On
the other hand if the line graph is made into a complete graph on n vertices, the cover time
decreases from Θ(n2) to Θ(n log(n)). Thus, (a), (b), and (c) are all incorrect.

7. X is a random variable that takes positive integer values. Let a be an integer. Which of the
following statements suffice to prove that Pr[X = a] > 0.
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(a) Pr[X ≥ a] > 0 and Pr[X ≤ a] > 0.

(b) E[X] = a.

(c) E[X] = a+ (1/4) and VAR(X) = 1/2.

(d) Pr[X > a] < 1/2 and Pr[X < a] < 1/2.

Solution. The correct answers in this case are (c) and (d). It is easy to check that (a) and
(b) are not sufficient conditions. To see that (c) is sufficient, apply Chebychev’s inequality to
show that Pr[|X − E[X]| > 0.74] < 1, and hence Pr[|X − a| < 0.74] > 0. But there is only
one integer value in the range [a − 0.74, a + 0.74], which is a. So it must be the case that
Pr[X = a] > 0. The fact that (d) is sufficient is obvious.

Problem 2. (Total 20 points) For a graph G = (V,E), for any subset of the vertices, V ′ ⊆ V , the
induced subgraph on V ′ is G′ = (V ′, E′), where E′ = {e = (i, j) | e ∈ E and i ∈ V ′, j ∈ V ′}. Thus,
any edge in the original graph that has both endpoints in V ′ is included in the induced subgraph.
Let G be a random graph generated according to the Gn,p model.

(a) Find the expected number of induced 4-cycles in the graph.

(b) Find the value of p for which the expected number of induced 4-cycles is 1, in the limit as
n→∞.

Solution. (a) Let X1, . . . , X(n4)
, be the random variables corresponding to all possible subsets of

size 4 of the set of vertices. Let Xi = 1, if the induced subgraph on the corresponding four vertices
is a 4-cycle. Note, that given 4 vertices, say labelled A,B,C,D, there are exactly 3 possible 4-cycle
graphs — (A,B,C,D), (A,C,B,D) and (A,B,D,C). In each case, exactly 4 edges must be present
and the remaining 2 absent. Thus, Pr[Xi = 1] = 3p4(1− p)2.

Now, if X =
∑

iXi, then E[X] =
(
n
4

)
3p(1− p)2 gives the expected number of induced 4-cycles.

Remark: A lot of you missed the fact that there are three possible 4-cycle graphs, given 4 vertices.

(b) Here there are two possibilities: If p is very small, that is p → 0 as n → ∞, then the graph is
sparse, making induced 4-cycles unlikely. Then, we have

lim
n→∞

E[X] =
n4p4

8

Solving for p, we get p = 4
√

8/n.
There is another possibility: If p is large, in the sense that p → 1 as n → ∞. In this case, the

graph is very dense, again making induced 4-cycles unlikely. We have:

lim
n→∞

E[X] =
n4(1− p)2

8

Solving for p, we get p = 1− (2
√

2/n2).

Remark: No points were deducted if you only obtained one value of p.

Problem 3. (Total 20 points) Consider a random walk (drunkard’s walk) in n dimensions. The
starting point is (0, . . . , 0) and at each step you choose one of the n co-ordinates randomly and add
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either +1 or −1 to it. You may assume that when n = 3, (0, 0, 0) is not a recurrent state. Using
this fact, show that for n ≥ 4, (0, . . . , 0) is not a recurrent state. (The proof is expected to be
formal, though you will get some partial credit for writing the correct high-level idea.)

Solution. High-level Idea: Consider the random walk in n-dimensions – this can be thought of as a
(random) infinite string over an alphabet of size 2n, say using (i,+1) and (i,−1), for 1 ≤ i ≤ n. If we
consider the substring corresponding to the movement in the first 3 dimensions, then this is a (ran-
dom) infinite string on an alphabet of size 6, with (1,+1), (1,−1), (2,+1), (2,−1), (3,+1), (3,−1)
– and exactly corresponds to a random walk in 3 dimensions. But, if the original random walk in
n dimensions returned to (0, . . . , 0) with probability 1, then so must the restriction to 3 dimensions.

Remark: Some credit was given for stating any reasonable proof idea. The closer your verbal
description was to a formal proof, the more points you got.

Now, for the formal proof. Let pt,k denote the probability that a random walk in k dimensions,
starting at (0, . . . , 0) returns to (0, . . . , 0) after t time-steps. Note that p0,k = 1 for all k.

Then consider,

pt,n =
t∑

t′=0

pt
′,3 · pt−t′,n−3 · Pr[t′ out of t steps were in the first 3 dimensions]

Note that, Pr[t′ out of t steps were in the first 3 dimensions] =
(
t
t′

)
(3/n)t

′
(1− 3/n)t−t

′
. Also, con-

ditioned on t′ out of t steps being the first 3-dimensions, the random walks in the first 3 dimensions
and the remaining n− 3 dimensions are independent. Summing both sides over t ≥ 0, we get

∞∑
t=0

pt,n =
∞∑
t=0

t∑
t′=0

pt
′,3pt−t

′,n−3
(
t

t′

)(
3

n

)t′ (
1− 3

n

)t−t′

=

∞∑
t′=0

pt
′,3

( ∞∑
t=t′

pt−t
′,n−3

(
t

t′

)(
3

n

)t′ (
1− 3

n

)t−t′
)

Since pt−t
′,n−3 ≤ 1, we get

∞∑
t=1

pt,n ≤
∞∑

t′=0

pt
′,3

( ∞∑
t=t′

(
t

t′

)(
3

n

)t′ (
1− 3

n

)t−t′
)

Now, we claim that
∑∞

t=t′
(
t
t′

) (
3
n

)t′ (
1− 3

n

)t−t′ ≤ n
3 . To see why: notice that

(
t
t′

) (
3
n

)t′+1 (
1− 3

n

)t−t′
(note the one extra power in the (3/n) term) is the probability that the t′+ 1th step of the random
walk that is in one of the first three dimensions happens exactly after a total of t time-steps (this

includes all n dimensions). Thus,
∑∞

t=t′
(
t
t′

) (
3
n

)t′+1 (
1− 3

n

)t−t′
is simply the probability that a total

of t′ + 1 steps are taken in the first 3 dimensions. Since this is a probability this can be at most 1
(in fact it is exactly 1 in this case). Thus, we have

∞∑
t=0

pt,n ≤
∞∑

t′=0

pt
′,3n

3
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Now, the RHS of the last expression is finite, by the assertion of the problem statement that the
3-d walk is not recurrent. But, then the LHS must also be finite, and hence the n-d walk is not
recurrent.

Remark: Some of you have said that not being recurrent is implied by the fact that pt,n → 0 as
t → ∞. This is not true. This only means that the state is not positive recurrent. In particular,
even in the 1-d and 2-d case, where the random walk is recurrent, this limit is 0.

Problem 4. (Total 40 points) Here we will consider the problem of finding sum-free subsets. Let
A = {a1, a2, . . . , an} be a set of positive-integers. Let S ⊆ A. We say that S is sum-free if there do
not exist integers, x, y, z ∈ S, such that x + y = z. (Note that the condition does not require the
integers to be distinct, thus in particular 0 6∈ S and there do not exist, x, z such that 2x = z.)

(a) When A = {1, 2, . . . , n}, show that there is a sum-free subset of size at least n/2.

Solution. Consider A1 = {i ∈ A | i is odd} or A2 = {bn/2c+ 1, . . . , n}. It is easy to see that
|A1| = |A2| ≥ n/2. A1 is sum-free because the sum of two odd numbers has to be even. A2

is sum-free because 2(bn/2c+ 1) ≥ n+ 1.

Remark: Points were deducted if you were not careful with floors/ceilings.

(b) In the rest of the problem, we will show that any set A, always has a sum-free subset of size
at least n/3. Let A = {a1, . . . , an} and suppose that an is the largest element.

Let p > 2an be a prime such that p ≡ 2 (mod 3) (i.e. p is of the form 3k+2. You may assume
that there are infinitely many primes of this form). Consider the set Fp = {0, 1, . . . , p − 1}.
We say that a set S ⊆ Fp is a sum-free modulo p, if there do not exist, x, y, z ∈ S, such that
x + y = z (mod p). Note that this is a stronger condition of sum-freeness. Show that Fp

contains a sum-free modulo p subset of size at least p/3. (Hint: Consider the middle third
elements of Fp.)

Solution. As stated above, let p = 3k + 2 be a prime. Let S = {k + 1, . . . , 2k + 1}. Then
|S| = k + 1 > p/3. If we add any two elements in S, as integers (not modulo p), the range
for possible sums is [2k+ 2, 4k+ 2]. When we consider these modulo p, 2k+ 2 > 2k+ 1, and
4k + 2 = (3k + 2) + k = k < k + 1. Thus, none of the sums modulo p can fall in S. Hence, S
is sum-free modulo p.

Remark 1: Again, if you were not careful with the exact range points have been deducted.
In particular, writing p/3, 2p/3 as if they were integers is not acceptable.

Remark 2: Some of you have ignored the fact that you were told that x and y (in the
definition of sum-freeness) could be the same element. Hence, your answers were not exactly
accurate.

(c) Use the observation in part (b) to show that A = {a1, . . . , an} always has a sum-free subset of
size n/3 (in integers). (Hint: Consider choosing a random element, r, from Fp. Then consider,
Ar,p = {ra1 (mod p), ra2 (mod p), . . . , ran (mod p)} ⊆ Fp. Let S ⊆ Fp be the subset obtained
in part (b). Consider the set Ar,p ∩ S. Then, use the method of expectations.)
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Solution. Let 0 < a < p, then if r ∈ Fp is chosen uniformly at random, then ar (mod p)
is distributed uniformly at random in Fp. To see this, observe that for r1 6= r2, r1a 6=
r2a (mod p). This is because, if p|a(r1 − r2), then p must divide either a or r1 − r2, since p
is prime; but both a and r1 − r2 are non-zero and strictly smaller than p. This implies that
every distinct element in Fp when multiplied to a modulo p, gives a distinct element in Fp.
And hence, ar (mod p) is uniformly distributed in Fp, when r is chosen uniformly at random.

Now, notice that for any ai ∈ A and randomly chosen r ∈ Fp, the probability that rai (mod p)
lands in S (the middle-third) is at least 1/3. Hence, E[|Ar,p ∩ S|] ≥ |A|/3. Thus, by the
method of expectations, there exists r for which |Ar,p ∩ S| ≥ |A|/3. For this value of r, let
As = {a | ar (mod p) ∈ S}. Then, As must be sum-free since S is sum-free modulo p.
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