Let $G = (V, E)$ be an undirected multigraph, i.e. there may be multiple edges between any two vertices $u, v \in V$. However, there are no self-loops in G.

Recall from the textbook, the procedure `Edge-Contract(e)` for some edge, $e = (u, v)$, from G. The procedure produces a resulting graph, $G' = (V', E')$, where two end-points u and v of the edge are merged into a single vertex, say \ast, and any edge (w, u) or (w, v) in the original graph is replaced by the edge (w, \ast). Thus, the only edges in G that are not present in G' are the edges between u and v (there may be multiple because G is a multi-graph).

Consider the following recursive algorithm for min-cut. The parameter $\sqrt{2}$ in the algorithm is somewhat optimized, but essentially could be replaced by any constant α with slightly worse guarantees. We will not explicitly use $\lfloor n/\sqrt{2} \rfloor$, but just use $n/\sqrt{2}$ as if it were an integer. This does not change the essence of the proof, but simplifies the notation considerably.

RecursiveMinCut($G = (V, E)$)

1. Let $G_1 = (V_1, E_1)$ be the graph obtained by $n - (n/\sqrt{2})$ edge-contract operations on G.
 Let $C_1 = \text{RecursiveMinCut}(G_1)$

2. Let $G_2 = (V_2, E_2)$ be the graph obtained by $n - (n/\sqrt{2})$ edge-contract operations on G (independent of G_1).
 Let $C_2 = \text{RecursiveMinCut}(G_2)$

3. Return the cut among C_1 and C_2 that is of a smaller size.

First, we show that following:

Lemma 1. The depth of recursion for `RecursiveMinCut`, starting with a graph $G = (V, E)$ is $2\log(|V|)$.

Proof. Every depth of recursion reduces the number of vertices by a factor $1/\sqrt{2}$. Therefore, when the depth is $2\log |V|$, the number of vertices remaining is at most $|V|(1/\sqrt{2})^{2\log |V|} = 1$. Thus, the depth of recursion can at most be $2\log |V|$.

Let $C \subseteq E$ be a specific min-cut in the graph $G = (V, E)$. We show next that the probability that the cut C is not destroyed before the recursive call is made is at least $1/2$.

Lemma 2. The probability that a specific min-cut C is not destroyed after $n - n/\sqrt{2}$ edge contract operations is at least

$$\frac{n}{\sqrt{2}} \cdot \left(\frac{n}{\sqrt{2}} - 1\right)$$

$$n \cdot (n - 1)$$

Proof. This is along the lines of proof of Theorem 1.8 in Chapter 1 of the textbook. However, instead of stopping when the graph has 2 vertices (in the textbook), we stop when the graph has $n/\sqrt{2}$ vertices. The argument is identical.
For any graph, $G = (V,E)$, let d_G be the depth of recursion required for this graph for the algorithm \textit{RecursiveMinCut}. We know that $d_G \leq 2 \log |V|$. Let p_d be the minimum (over all possible graphs) probability that the recursive min-cut algorithm succeeds in finding a min-cut for all graphs, G, with $d_G \leq d$. We will show by induction that $p_d \geq 1/(d+1)$.

Observe that $p_0 = 1$, i.e. in the base case the algorithm always succeeds. Suppose it is the case that $p_{d-1} \geq 1/d$. Now consider an arbitrary graph which requires recursion depth d.

In the algorithm, \textit{RecursiveMinCut}, let p be the probability that C_1 is a min-cut. The probability that C_2 is a min-cut is also exactly p (since the process is identical). However, the event C_1 being a min-cut and C_2 being a min-cut are independent. Thus, the probability that at least one of them is a min-cut is $2p - p^2$. It is easy to show that $2p - p^2$ is an increasing function of p. Now, note that $p \geq (1/2)p_{d-1}$, thus we have

$$p_d = 2p - p^2 \geq p_{d-1} - \frac{1}{4}p_{d-1}^2 \geq 1 - \frac{1}{4d^2} \geq \frac{1}{d+1}$$

Running Time

Thus, the probability that \textit{RecursiveMinCut} succeeds for a graph $G = (V,E)$ is at least $1/(2 \log |V| + 1)$. Now, in order to guarantee that the algorithm succeeds with probability say $1 - 1/|V|^2$, it is sufficient to run \textit{RecursiveMinCut} on graph $G = (V,E)$ independently $(2 \log |V| + 1)^2$ times (Why?).

The running time of a single-run of \textit{RecursiveMinCut} satisfies the following recursion.

$$T(|V|) = 2|V||V| - (|V|/\sqrt{2})) + 2T(|V|/\sqrt{2})$$

Using the master theorem, this gives us a running time $T(|V|) = O(|V|^2 \log |V|)$. Thus, when the total running time (after running this algorithm $(2 \log |V| + 1)^2$ times independently) is $O(|V|^2 \log^3 |V|)$, which is much better than the $O(|V|^4 \log |V|)$ bound if we run the algorithm in the book repeatedly to get the same error rate, and is even better than the best deterministic runtime of $O(|V|^3)!$