CS—174 Combinatorics & Discrete Probability, Spring 2007
Lecture Notes on Primality Testing
May 8, 2007

There are many situations in which the primality of a giveteger must be determined. For example,
fingerprinting requires a supply of prime numbers, as doefiBA cryptosystem (where the primes should
typically have hundreds of bits).

A theoretical breakthrough in 2002, due to Agrawal, Kayal &axena has given us a deterministic poly-
nomial time algorithm for primality testing. However, ingmtice randomized algorithms are more efficient
and continue to be used. These algorithms date back to tlEs1®Yd caused a surge in the study of applied
number theory.

A Simple Deterministic Algorithm

Given an odd integen, we wish to determine whether is prime or composite. Consider the following
deterministic algorithm:

fora=2,3,...,[v/n] do

if aln

then output “composite” and halt
output “prime”

This algorithm is obviously correct. However, because tiredldop hasO(y/n) iterations, the algorithm
does not have running time polynomial in the number of inpist iConsider the case wherds an integer

with hundreds or thousands of bits; thef is an enormous number!) Other, more sophisticated algosith
based on prime number sieves are a bit more efficient busaftir from a similar drawback.

Randomized Algorithms

Our first randomized algorithm is based on the following dtad theorem:
Fermat’s Little Theorem: If p is prime, thers?~! = I mod pforalla € {1,....p — 1}.

In particular, for a given integet, if there exists am € {1,...,n — 1} such thata"~! # 1 mod n, then
surelyn is composite. This fact suggests the following algorithmown as “Fermat’s Test”:

picka € {1,...,n — 1} uniformly at random
if ged(a,n) # 1

then output “composite” and halt

else ifa” ! # 1 mod n

then output “composite”

elseoutput “prime”

Computingged(a,n) can be done in tim&(log n) by Euclid’s algorithm, and:”~! can be computed in
O(log? n) time by repeated squaring, so this algorithm runs in timglpghrithmic inn (i.e., polynomial
in the input size). It is also extremely efficient in practice

Error probability

Clearly the algorithm is always correct whenis prime. However, whemn is composite it may make an
error if it fails to find a “witness,” i.e., a number such thata”!' # 1 mod n. Unfortunately, there are
composite numbers, known as “Carmichael numbers,” thad hawvitnesses. The first three CN’s are 561,
1105, and 1729 .Hxercise Prove that 561 is a CN. Hinfi61 = 3x 11 x 17.] These numbers are guaranteed
to fool Fermat's Test.

However, it turns out that CN’s are tlomly bad inputs for the algorithm, as we now show. In what follows,
we use the notatiofd,, to denote the additive group of integers modandZ;, the multiplicative group of
integers coprime ta (i.e., withged(a,n) = 1).

. . . . 1
Theorem: If n is composite and not a Carmichael number, tiefError] < 5.

Proof: Let S, = {a € Z% : a"~! = 1 mod n}, i.e., S, is the set oki € Z? that arenot witnesses. Clearly
Sy, is a subgroup o’ (because it containsand is closed under multiplication). Moreover, it ip@per
subgroup since is not a CN and therefore by definition there is at least onees#a ¢ S,,. By Lagrange’s
Theorem (a standard theorem from Group Theory), the sizenpksabgroup must divide the size of the

v 1
group, so we may conclude thé% <s. m

Fortunately, CN's are rare: there are only 255 of them leas 1h®. For this reason, Fermat's Test actually
performs quite well in practice. Indeed, even the simplifieterministic version which performs the test
only with @ = 2 is sometimes used to produce “industrial grade” primes.s Bhnplified version makes
only 22 errors in the first 10,000 integers. It has also beewgat for this version that

blim Pr[Error on randond-bit numbef — 0.

— O

For values ob of 50 and 100, we get FError] < 10~6 and P{Error] < 10~!3 respectively. However, as in
many other situations considered in this course, we donit weassume anything about the input (such as,
that it is random) and would like to have an algorithm thatuamnteed to have small error probability on
everyinput.

Dealing with Carmichael numbers

We will now present a more sophisticated algorithm (usuaitsibuted to Miller and Rabin) that deals with
Carmichael numbers. First observe thay, i§ prime, the groufZ: is cyclic: Z; = {g,¢*,--- ,¢g*~' = 1}
for some generatog € Zy. (Actually this holds forn € {1,2,4} and forn = pk orn = 2p* where
p is an odd prime and is a non-negative integer.) Note that théh = Z, ,. For example, here is the
multiplication table forZz, which has 3 and 5 as generators:

7Z7;1112|3|4|5|6
111/2|3|4|5|6
212|416 |11|3|5
3|13|6|2|5|1|4
4 |4(1|5/2|6]3
5|5|13|1/6|4)2
6 |6|5|/4|13|2|1

Definition: a is aquadratic residueif 3 = € Z; such thata = x? mod p. We say that: is asquare root
of a.

Thus a quadratic residue is just a perfect squat&jinThe following claim follows immediately from the
cyclic structure ofZ,, (exercise):

Claim: For a primep,
(i) a = ¢’ is a quadratic residue iff is even (i.e., exactly half df; are quadratic residues).

(i) Each quadratic residue = g’ has exactly two square roots, namglclyand g%+ B

As an example, from the above table it can be seen that 2, 4] anel quadratic residues #t. We obtain
the following corollary, which will form the basis of our pmility test:

Corollary: If p is prime, then 1 has no non-trivial square rootsZj, i.e., the only square roots of 1 ifi,
are +1.

In Z* for compositen, there may be non-trivial roots of 1: for example Zgs, 62 = 1.

We can now present our improved primality test. The idea isetarch for non-trivial square roots of 1.
Specifically, assume thatis odd, and not a prime power. (We can detect prime powerslympmial time
and exclude them: Exercise!). Then- 1 is even, and we can write — 1 = 2" R with R odd. We search
by computinga®, a?®,a*®, ... | a®> B = ¢»! (all modn). Each term in this sequence is the square of
the previous one, and (assuming thdails the Fermat Test, in which case we would be done anywey) t
last term is 1. Thus if the first 1 in the sequence is preceded toymber other than 1, we have found a
non-trivial root and can declare thais composite. More specifically the algorithm works as foko

for inputn.

pick ana € {1,...,n — 1} uniformly at random

if gcd(a,n) # 1 then ouput “composite” and halt
computeh; = a®> B modn, i =0,1,---r

if b,.[= a"~!] # 1 then output “composite” and halt
else ifbg = 1 then output “prime” and halt

elselet j = max{i : b; # 1}

if b; # —1 mod n then output “composite”
elseoutput “prime”

For example, for the Carmichael number= 561, we haven — 1 = 560 = 2* x 35. If a = 2 then the
sequence computed by the algorithmu#s mod 561 = 263, ™ mod 561 = 166, a'*° mod 561 = 67,
a?® mod 561 = 1, a®® mod 561 = 1. So the algorithm finds tha}7 is a non-trivial square root df and
therefore concludes th&é1 is not prime.

It remains to show that the error probability is bounded whes composite (so that the witness property
of a = 2 in the above example is in fact not a fluke).

Analysis

If a»~! # 1 modn then we know that is composite, otherwise the algorithm continues by seagcfur a
nontrivial square root of 1. It examines the descending esecgi of square roots beginningat ! = 1:

an—17a(n—1)/2’ a(n—l)/4 o ,CLR.

)

There are three cases to consider:

(i) The powers are all equal to 1.
(i) The first power (in descending order) that is not .

(iii) The first power (in descending order) that is not 1 is atnigial root of 1.

In the first two cases the algorithm fails to find a witness f&r tompositeness af, so it guesses thatis
prime. In the third case it has found some powes tfiat is a nontrivial square root of 1, ads a witness
thatn is composite.

The key fact to prove is that, if is composite, then the algorithm is quite likely to find a wegs:
Theorem: If n is odd, composite, and not a prime power, that is a withess > %

To prove this claim we will use the following definition andriena.

Definition: Call s = 2'R a bad power if3x € Z such thatz® = —1 modn.

Lemma: For any bad powes, S,, = {z € Z} : x°* = £1 modn} is a proper subgroup oL .
We will first use the Lemma to prove the Theorem, and then fibjsproving the Lemma.

Proof of Theorem: Let s* = 2¢" R be the largest bad power in the sequet@R, 2R, ..., 2"R. (We
know s* exists becausg is odd, so(—1)® = —1 and hencer at least is bad.)

Let S,, be the proper subgroup correspondingtpas given by the Lemma. Consider any non-witness
One of the following cases must hold:

() e =a?f=a*R = ... =a"' =1 modn

(i) a®*®=—-1modn, «>*"R=...=a"! =1 modn (for somej).
In either case, we claim thate S,,. In case (i),as* = 1 modn, soa € S,. In case (i), we know tha2’ R
is a bad power, and sincé is the largest bad power theri” = -1 modn and soa € S,,. Therefore, all

non-witnesses must be elements of the proper subgsqu@Jsing Lagrange’s Theorem just as we did in
the analysis of the Fermat Test earlier, we see that

|5l
|Z:,]

DO | =

Prla is not a witness< <

This completes the proof of the Theorem. [

We now go back and provide the missing proof of the Lemma.

Proof of Lemma.: S,, is clearly closed under multiplication and hence a subgreopve must only show
that it isproper, i.e., that there is some elementZj but not inS,,. Sinces is a bad power, we can fix an
x € Z; such thatt® = —1. Sincen is odd, composite, and not a prime power, we can fipéndn, such
thatn; andny are odd, coprime, and = ny - no.

Sincen; andnq are coprime, the Chinese Remainder Theorem implies thet thests a unique <€ 7Z,
such that

y = xmodng;
y = 1modny

We claim thaty € Z; \ S,.

Sincey = x modn; andged(z,n) = 1, we knowgcd(y,ny) = ged(z,n1) = 1. Also, ged(y, ne) = 1.
Together these giveed(y, n) = 1. Thereforey € Z.

We also know that

y® = x° modn,
= —1modn; (%)
y® = 1modny (xx)

Supposey € S,,. Then by definitiony® = +1 modn.
If y* = 1 modn, theny® = 1 modn; which contradictgx).
If y* = —1 modn, theny® = —1 modny which contradictg).

Thereforey cannot be an element 6f,, so.S,, must be a proper subgroup @f,. This completes the proof
of the Lemma. [

