# Machine Learning (AIMS) - MT 2017 1. PCA and MDS

Varun Kanade

University of Oxford November 6, 2017

## Unsupervised Learning

Training data is of the form  $\mathbf{x}_1,\dots,\mathbf{x}_N$ 

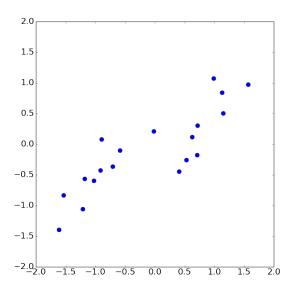
Infer properties about the data

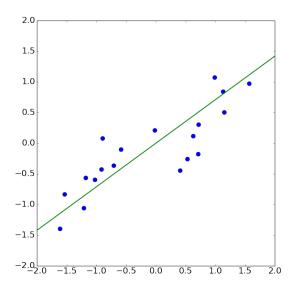
- Search: Identify patterns in data
- Density Estimation: Learn the underlying distribution generating data
- Clustering: Group similar points together
- Today: Dimensionality Reduction

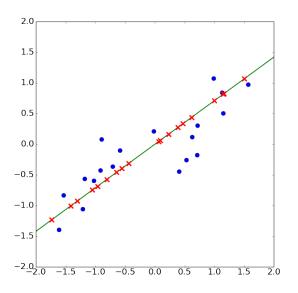
#### Outline

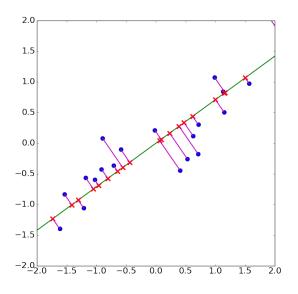
Today, we'll study a technique for dimensionality reduction

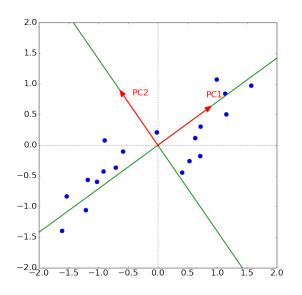
- Principal Component Analysis (PCA) identifies a small number of directions which explain most variation in the data
- PCA can be kernelised
- Dimensionality reduction is important both for visualising and as a preprocessing step before applying other (typically unsupervised) learning algorithms











#### PCA: Maximum Variance View

PCA is a *linear* dimensionality reduction technique

Find the directions of maximum variance in the data  $\langle (\mathbf{x}_i) \rangle_{i=1}^N$ 

Assume that data is centered, i.e.,  $\sum_i \mathbf{x}_i = \mathbf{0}$ 

Find a set of orthogonal vectors  $\mathbf{v}_1,\ldots,\mathbf{v}_k$ 

- $\blacktriangleright$  The first principal component (PC)  $\mathbf{v}_1$  is the direction of largest variance
- lacktriangle The second PC  ${f v}_2$  is the direction of largest variance orthogonal to  ${f v}_1$
- ▶ The  $i^{th}$  PC  $\mathbf{v}_i$  is the direction of largest variance orthogonal to  $\mathbf{v}_1,\dots,\mathbf{v}_{i-1}$

 $\mathbf{V}_{D imes k}$  gives projection

$$\mathbf{z}_i = \mathbf{V}^\mathsf{T} \mathbf{x}_i$$
 for datapoint  $\mathbf{x}_i$   $\mathbf{Z} = \mathbf{X} \mathbf{V}$  for entire dataset

#### PCA: Maximum Variance View

We are given i.i.d. data  $\langle (\mathbf{x}_i) \rangle_{i=1}^N$ ; data matrix  $\mathbf{X}$ 

Want to find  $\mathbf{v}_1 \in \mathbb{R}^D$ ,  $\|\mathbf{v}_1\| = 1$ , that maximizes  $\|\mathbf{X}\mathbf{v}_1\|^2$ 

Let  $\mathbf{z} = \mathbf{X}\mathbf{v}_1$ , so  $z_i = \mathbf{x}_i \cdot \mathbf{v}_1$ .

We wish to find  $\mathbf{v}_1$  so that  $\sum_{i=1}^N z_i^2$  is maximised.

$$egin{aligned} \sum_{i=1}^N z_i^2 &= \mathbf{z}^\mathsf{T} \mathbf{z} \ &= \mathbf{v}_1^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v}_1 \end{aligned}$$

The maximum value attained by  $\mathbf{v}_1^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v}_1$  for  $\|\mathbf{v}_1\| = 1$  is the largest eigenvalue of  $\mathbf{X}^\mathsf{T} \mathbf{X}$ .

The  $\operatorname{argmax}$  is the corresponding eigenvector  $\mathbf{v}_1$ .

Find  $v_2, v_3, \dots, v_k$  that are all successively orthogonal to previous directions and maximise (as yet unexplained variance)

#### PCA: Best Reconstruction

We have i.i.d. data  $\langle (\mathbf{x}_i) \rangle_{i=1}^N$ ; data matrix  $\mathbf{X}$ 

Find a k-dimensional linear projection that best represents the data

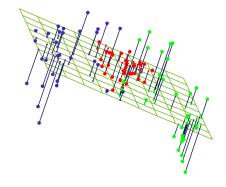
Suppose  $\mathbf{V}_k \in \mathbb{R}^{D imes k}$  is such that columns of  $\mathbf{V}_k$  are orthogonal

Project data  ${f X}$  on to subspace defined by  ${f V}$ 

$$\mathbf{Z} = \mathbf{X} \mathbf{V}_k$$

Minimize reconstruction error

$$\sum_{i=1}^{N} \|\mathbf{x}_i - \mathbf{V}_k \mathbf{V}_k^\mathsf{T} \mathbf{x}_i\|^2$$



## Equivalence between the Two Objectives: One PC Case

Let  $v_1$  be the direction of projection

The point  ${\bf x}$  is mapped to  $\tilde{{\bf x}}=({\bf v}_1\cdot{\bf x}){\bf v}_1$ , where  $\|{\bf v}_1\|=1$ 

#### Maximum Variance

Find  $\mathbf{v}_1$  that maximises  $\sum_{i=1}^{N} (\mathbf{v}_1 \cdot \mathbf{x}_i)^2$ 

#### **Best Reconstruction**

Find  $v_1$  that minimises:

$$\sum_{i=1}^{N} \|\mathbf{x}_{i} - \tilde{\mathbf{x}}_{i}\|^{2} = \sum_{i=1}^{N} \left( \|\mathbf{x}_{i}\|^{2} - 2(\mathbf{x}_{i} \cdot \tilde{\mathbf{x}}_{i}) + \|\tilde{\mathbf{x}}_{i}\|^{2} \right)$$

$$= \sum_{i=1}^{N} \left( \|\mathbf{x}_{i}\|^{2} - 2(\mathbf{v}_{1} \cdot \mathbf{x}_{i})^{2} + (\mathbf{v}_{1} \cdot \mathbf{x}_{i})^{2} \|\mathbf{v}_{1}\|^{2} \right)$$

$$= \sum_{i=1}^{N} \|\mathbf{x}_{i}\|^{2} - \sum_{i=1}^{N} (\mathbf{v}_{1} \cdot \mathbf{x}_{i})^{2}$$

So the same  $v_1$  satisfies the two objectives

## Finding Principal Components: SVD

Let X be the  $N \times D$  data matrix

Pair of singular vectors  $\mathbf{u} \in \mathbb{R}^N$  ,  $\mathbf{v} \in \mathbb{R}^D$  and singular value  $\sigma \in \mathbb{R}^+$  if

$$\sigma \mathbf{u} = \mathbf{X} \mathbf{v}$$
 and  $\sigma \mathbf{v} = \mathbf{X}^\mathsf{T} \mathbf{u}$ 

 ${f v}$  is an eigenvector of  ${f X}^{\sf T}{f X}$  with eigenvalue  $\sigma^2$ 

 ${f u}$  is an eigenvector of  ${f X}{f X}^{\sf T}$  with eigenvalue  $\sigma^2$ 

## Finding Principal Components: SVD

$$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\mathsf{T}$$
 (say  $N > D$ )

Thin SVD: U is 
$$N \times D$$
,  $\Sigma$  is  $D \times D$ , V is  $D \times D$ ,  $\mathbf{U}^\mathsf{T} \mathbf{U} = \mathbf{V}^\mathsf{T} \mathbf{V} = \mathbf{I}_D$ 

$$\Sigma$$
 is diagonal with  $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_D \geq 0$ 

The first k principal components are first k columns of  ${f V}$ 

Full SVD: U is  $N \times N$ ,  $\Sigma = N \times D$ , V is  $D \times D$ . V and U are orthonormal matrices

## Algorithm for finding PCs (when N > D)

Constructing the matrix  $\mathbf{X}^\mathsf{T}\mathbf{X}$  takes time  $O(D^2N)$ 

Eigenvectors of  $\mathbf{X}^\mathsf{T}\mathbf{X}$  can be computed in time  $O(D^3)$ 

Iterative methods to get top k singular (right) vectors directly:

- ightharpoonup Initiate  $\mathbf{v}^0$  to be random unit norm vector
- ▶ Iterative Update:
  - $\mathbf{v}^{t+1} = \mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{v}^t$  $\mathbf{v}^{t+1} = \mathbf{v}^{t+1} / \|\mathbf{v}^{t+1}\|$

until (approximate) convergence

- ▶ Update step only takes O(ND) time (compute  $\mathbf{X}\mathbf{v}^t$  first, then  $\mathbf{X}^\mathsf{T}(\mathbf{X}\mathbf{v}^t)$ )
- This gives the singular vector corresponding to the largest singular value
- ightharpoonup Subsequent singular vectors obtained by choosing  ${f v}^0$  orthogonal to previously identified singular vectors (this needs to be done at each iteration to avoid numerical errors creeping in)

## Algorithm for finding PCs (when D $\gg$ N)

Constructing the matrix  $\mathbf{X}\mathbf{X}^\mathsf{T}$  takes time  $O(N^2D)$ 

Eigenvectors of  $\mathbf{X}\mathbf{X}^\mathsf{T}$  can be computed in time  $O(N^3)$ 

The eigenvectors give the 'left' singular vectors,  $\mathbf{u}_i$  of  $\mathbf{X}$ 

To obtain  $\mathbf{v}_i$ , we use the fact that  $\mathbf{v}_i = \sigma^{-1} \mathbf{X}^\mathsf{T} \mathbf{u}_i$ 

Iterative method can be used directly as in the case when  ${\cal N}>{\cal D}$ 

#### PCA: Reconstruction Error

We have thin SVD:  $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\mathsf{T}$ 

Let  $V_k$  be the matrix containing first k columns of V

<u>Projection on to k PCs</u>:  $\mathbf{Z} = \mathbf{X}\mathbf{V}_k = \mathbf{U}_k\boldsymbol{\Sigma}_k$ , where  $\mathbf{U}_k$  is the matrix of the first k columns of  $\mathbf{U}$  and  $\boldsymbol{\Sigma}_k$  is the  $k\times k$  diagonal submatrix for  $\boldsymbol{\Sigma}$  of the top k singular values

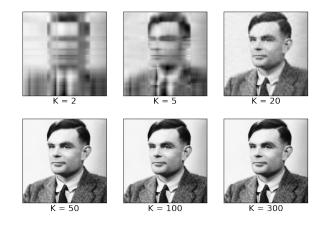
Reconstruction:  $ilde{\mathbf{X}} = \mathbf{Z}\mathbf{V}_k^\mathsf{T} = \mathbf{U}_k\mathbf{\Sigma}_k\mathbf{V}_k^\mathsf{T}$ 

$$\text{Reconstruction error} = \sum_{i=1}^N \|\mathbf{x}_i - \mathbf{V}_k \mathbf{V}_k^\mathsf{T} \mathbf{x}_i\|^2 = \sum_{j=k+1}^D \sigma_j^2$$

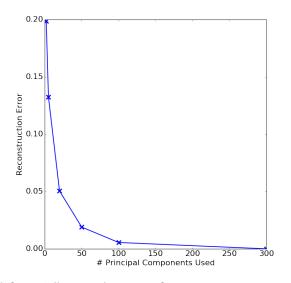
This follows from the following calculations:

$$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}} = \sum_{j=1}^{D} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{\mathsf{T}} \qquad \widetilde{\mathbf{X}} = \mathbf{U}_{k} \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{\mathsf{T}} = \sum_{j=1}^{k} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{\mathsf{T}}$$
$$\|\mathbf{X} - \widetilde{\mathbf{X}}\|_{F} = \sum_{j=k+1}^{D} \sigma_{j}^{2}$$

# Reconstruction of an Image using PCA



## How many principal components to pick?



Look for an 'elbow' in the curve of reconstruction error vs # PCs

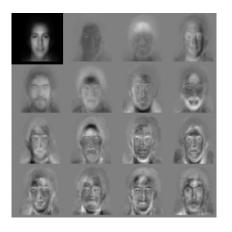
### **Application: Eigenfaces**

A popular application of PCA for face detection and recognition is known as Eigenfaces

- ► Face detection: Identify faces in a given image
- Face Recognition: Classification (or search) problem to identify a certain person



## **Application: Eigenfaces**



PCA on a dataset of face images. Each principal component can be thought of as being an 'element' of a face.

 $Source: \verb|http://vismod.media.mit.edu/vismod/demos/facerec/basic.html| \\$ 

## **Application: Eigenfaces**

Detection: Each patch of the image can be checked to identify whether there is a face in it

Recognition: Map all faces in terms of their principal components. Then use some distance measure on the projections to find faces that are most like the input image.

#### Why use PCA for face detection?

- $\blacktriangleright$  Even though images can be large, we can use the  $D\gg N$  approach to be efficient
- The final model (the PCs) can be quite compact, can fit on cameras, phones
- Works very well given the simplicity of the model

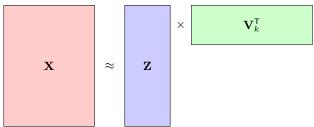
## Application: Latent Semantic Analysis

 ${f X}$  is an N imes D matrix, D is the size of dictionary

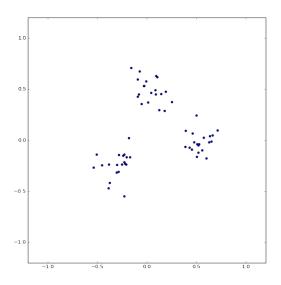
 $\mathbf{x}_i$  is a vector of word counts (bag of words)

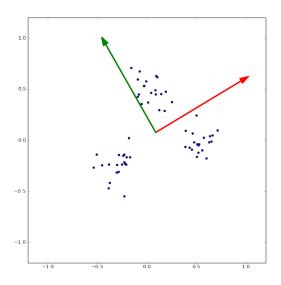
Reconstruction using k eigenvectors  $\mathbf{X} pprox \mathbf{Z} \mathbf{V}_k^\mathsf{T}$ , where  $\mathbf{Z} = \mathbf{X} \mathbf{V}_k$ 

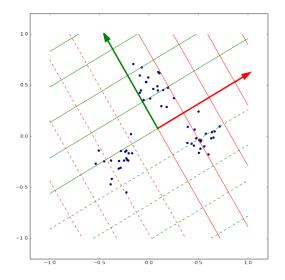
 $\langle \mathbf{z}_i, \mathbf{z}_j \rangle$  is probably a better notion of similarity than  $\langle \mathbf{x}_i, \mathbf{x}_j \rangle$ 

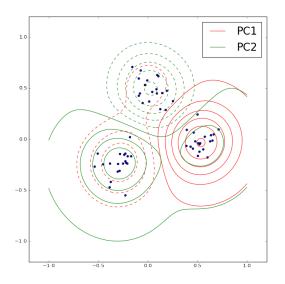


Non-negative matrix factorisation has more natural interpretation, but is harder to compute

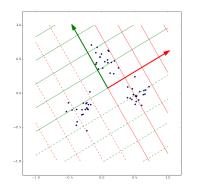


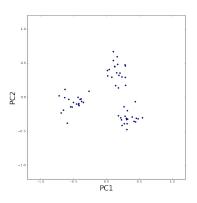




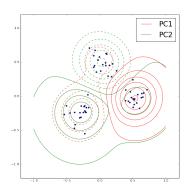


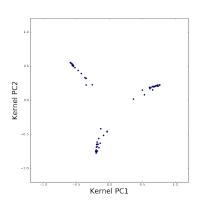
# Projection: Linear PCA





# Projection: Kernel PCA





#### Kernel PCA

Suppose our original data is, for example,  $\mathbf{x} \in \mathbb{R}^2$ 

We could perform degree 2 polynomial basis expansion as:

$$\phi(\mathbf{x}) = \left[1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2\right]^\mathsf{T}$$

Recall that we can compute the inner products  $\phi(\mathbf{x})\cdot\phi(\mathbf{x}')$  efficiently using the kernel trick

$$\phi(\mathbf{x}) \cdot \phi(\mathbf{x}') = 1 + 2x_1 x_1' + 2x_2 x_2' + x_1^2 (x_1')^2 + x_2^2 (x_2')^2 + 2x_1 x_2 x_1' x_2'$$
$$= (1 + x_1 x_2 + x_1' x_2')^2 = (1 + \mathbf{x} \cdot \mathbf{x}')^2 =: \kappa(\mathbf{x}, \mathbf{x}')$$

#### Kernel PCA

Suppose we use the feature map:  $\phi: \mathbb{R}^D \to \mathbb{R}^M$ 

Let  $\phi(\mathbf{X})$  be the  $N \times M$  matrix

We want find the singular vectors of  $\phi(\mathbf{X})$  (eigenvectors of  $\phi(\mathbf{X})^\mathsf{T}\phi(\mathbf{X})$ )

However, in general  $M\gg N$  (in fact M could be infinite for some kernels)

Instead we'll find the eigenvectors of  $\phi(\mathbf{X})\phi(\mathbf{X})^\mathsf{T}$ , the kernel matrix

Recall that the kernel matrix is:

$$\mathbf{K} = \phi(\mathbf{X})\phi(\mathbf{X})^{\mathsf{T}} = \begin{bmatrix} \kappa(\mathbf{x}_1, \mathbf{x}_1) & \kappa(\mathbf{x}_1, \mathbf{x}_2) & \cdots & \kappa(\mathbf{x}_1, \mathbf{x}_N) \\ \kappa(\mathbf{x}_2, \mathbf{x}_1) & \kappa(\mathbf{x}_2, \mathbf{x}_2) & \cdots & \kappa(\mathbf{x}_2, \mathbf{x}_N) \end{bmatrix} \\ \vdots & \vdots & \ddots & \vdots \\ \kappa(\mathbf{x}_N, \mathbf{x}_1) & \kappa(\mathbf{x}_N, \mathbf{x}_2) & \cdots & \kappa(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix}$$

Let  $\mathbf{u} \in \mathbb{R}^N$  be an eigenvector of  $\mathbf{K}$ , (left singular vector of  $\phi(\mathbf{X})$ )

The corresponding principal component  $\mathbf{v} \in \mathbb{R}^M$  is  $\sigma^{-1}\phi(\mathbf{X})^\mathsf{T}\mathbf{u}$ 

We won't express  ${\bf v}$  explicitly, instead we can compute projections of a new datapoint  ${\bf x}_{\text{new}}$  on to the principal component  ${\bf v}$  using the kernel function:

$$\phi(\mathbf{x}_{\text{new}})^\mathsf{T}\mathbf{v} = \sigma^{-1}\phi(\mathbf{x}_{\text{new}})^\mathsf{T}\phi(\mathbf{X})^\mathsf{T}\mathbf{u} \quad = \sigma^{-1}[\kappa(\mathbf{x}_{\text{new}},\mathbf{x}_1),\kappa(\mathbf{x}_{\text{new}},\mathbf{x}_2),\cdots,\kappa(\mathbf{x}_{\text{new}},\mathbf{x}_N)]\mathbf{u}$$

So in order to compute projections onto principal components we do not need to store the principal components explicitly!

#### Kernel PCA

For PCA, we assumed that the datamatrix  ${f X}$  is centered, i.e.,  $\sum_i {f x}_i = {f 0}$ 

However, this is not the case for the matrix  $\phi(\mathbf{X})$ 

Instead we can consider:

$$\tilde{\phi}(\mathbf{x}_i) = \phi(\mathbf{x}_i) - \frac{1}{N} \sum_{k=1}^{N} \phi(\mathbf{x}_k)$$

The corresponding matrix  $\tilde{\mathbf{K}}$  is given by the entries

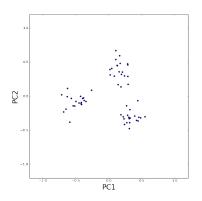
$$\tilde{K}_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j) - \frac{1}{N} \sum_{l=1}^{N} \kappa(\mathbf{x}_i, \mathbf{x}_l) - \frac{1}{N} \sum_{l=1}^{N} \kappa(\mathbf{x}_j, \mathbf{x}_l) + \frac{1}{N^2} \sum_{k=1}^{N} \sum_{l=1}^{N} \kappa(\mathbf{x}_l, \mathbf{x}_k)$$

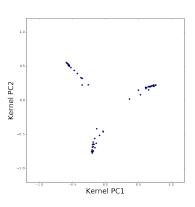
Succintly, if  ${\bf O}$  is the matrix of all with every entry 1/N, *i.e.*,  ${\bf O}={\bf 1}{\bf 1}^{\sf T}/N$ 

$$\tilde{\mathbf{K}} = \mathbf{K} - \mathbf{O}\mathbf{K} - \mathbf{K}\mathbf{O} + \mathbf{O}\mathbf{K}\mathbf{O}$$

To perform kernel PCA, we need to find the eigenvectors of  ${f K}$ 

# Projection: PCA vs Kernel PCA





### **Kernel PCA Applications**

- Kernel PCA is not necessarily very useful for visualisation
- Also, kernel PCA does not directly give a useful way to construct a low-dimensional reconstruction of the original data
- Most powerful uses of kernel PCA are in other machine learning applications
- After kernel PCA preprocessing, we may get higher accuracy for classification, clustering, etc.

#### **PCA Summary**

Algorithm: We've expressed PCA as SVD of data matrix  ${f X}$ 

Equivalently, we can use eigendecomposition of the matrix  $\mathbf{X}^\mathsf{T}\mathbf{X}$ 

Running Time: O(NDk) to compute k principal components (avoid computing the matrix  $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ )

PCs are uncorrelated, but there may be non-linear (higher-order) effects

PCA depends on scale or units of measurement; it may be a good idea to standardize data

PCA is sensitive to outliers

PCA can be kernelised: Useful as preprocessing for further ML applications, rather than visualisation