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Outline

This week, we will study some approaches to clustering

I Defining an objective function for clustering

I k-Means formulation for clustering

I Multidimensional Scaling

I Hierarchical clustering

I Spectral clustering
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England pushed towards Test defeat by India

France election: Socialists scramble to avoid split after Fillon win

Giants Add to the Winless Browns’ Misery

Strictly Come Dancing: Ed Balls leaves programme

Trump Claims, With No Evidence, That ‘Millions of People’ Voted Illegally

Vive ‘La Binoche’, the reigning queen of French cinema
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Sports England pushed towards Test defeat by India

Politics France election: Socialists scramble to avoid split after Fillon win

Sports Giants Add to the Winless Browns’ Misery

Film&TV Strictly Come Dancing: Ed Balls leaves programme

Politics Trump Claims, With No Evidence, That ‘Millions of People’ Voted Illegally

Film&TV Vive ‘La Binoche’, the reigning queen of French cinema
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England England pushed towards Test defeat by India

France France election: Socialists scramble to avoid split after Fillon win

USA Giants Add to the Winless Browns’ Misery

England Strictly Come Dancing: Ed Balls leaves programme

USA Trump Claims, With No Evidence, That ‘Millions of People’ Voted Illegally

France Vive ‘La Binoche’, the reigning queen of French cinema
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Clustering

Often data can be grouped together into subsets that are coherent.
However, this grouping may be subjective. It is hard to define a general
framework.

Two types of clustering algorithms

1. Feature-based - Points are represented as vectors in RD

2. (Dis)similarity-based - Only know pairwise (dis)similarities

Two types of clustering methods

1. Flat - Partition the data into k clusters

2. Hierarchical - Organise data as clusters, clusters of clusters, and so on
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Defining Dissimilarity

I Weighted dissimilarity between (real-valued) attributes

d(x,x′) = f

 D∑
i=1

widi(xi, x
′
i)


I In the simplest setting wi = 1 and di(xi, x′i) = (xi − x′i)2 and f(z) = z,

which corresponds to the squared Euclidean distance

I Weights allow us to emphasise features differently

I If features are ordinal or categorical then define distance suitably

I Standardisation (mean 0, variance 1) may or may not help
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Helpful Standardisation
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Unhelpful Standardisation
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Partition Based Clustering

Want to partition the data into subsets C1, . . . , Ck, where k is fixed in
advance

Define quality of a partition by

W (C) =
1

2

k∑
j=1

1

|Cj |
∑

i,i′∈Cj

d(xi,xi′)

If we use d(x,x′) = ‖x− x′‖2, then

W (C) =
k∑

j=1

∑
i∈Cj

‖xi − µj‖
2

where µj = 1
|Cj |

∑
i∈Cj

xi

The objective is minimising the sum of squares of distances to the mean
within each cluster
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Partition Based Clustering : k-Means Objective

Minimise jointly over partitions C1, . . . , Ck and µ1, . . . ,µk

W (C) =
k∑

j=1

∑
i∈Cj

‖xi − µj‖
2

This problem is NP-hard even for k = 2 for points in RD

If we fix µ1, . . . ,µj , finding a partition (Cj)
k
j=1 that minimisesW is easy

Cj = {i | ‖xi − µj‖ = min
j′
‖xi − µj′‖}

If we fix the clusters C1, . . . , Ck minimisingW with respect to (µj)
k
j=1 is

easy

µj =
1

|Cj |
∑
i∈Cj

xi

Iteratively run these two steps - assignment and update
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Ground Truth Clusters k-Means Clusters (k = 3)
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The k-Means Algorithm

1. Intialise means µ1, . . . ,µk ‘‘randomly’’

2. Repeat until convergence:

a. Find assignments of data to clusters represented by the mean that is
closest to obtain, C1, . . . , Ck:

Cj = {i | j = argmin
j′

‖xi − µj′‖
2}

b. Update means using the current cluster assignments:

µj =
1

|Cj |
∑
i∈Cj

xi

Note 1: Ties can be broken arbitrarily

Note 2: Choosing k random datapoints to be the initial k-means is a good
idea
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The k-Means Algorithm

Does the algorithm always converge?

Yes, because theW function decreases every time a new partition is used;
there are only finitely many partitions

W (C) =

k∑
j=1

∑
i∈Cj

‖xi − µj‖
2

Convergence may be very slow in the worst-case, but typically fast on
real-world instances

Convergence is probably to a local minimum. Run multiple times with
random initialisation.

Can use other criteria: k-medoids, k-centres, etc.

Selecting the right k is not easy: plotW against k and identify a "kink"
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Ground Truth Clusters k-Means Clusters (k = 4)
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Choosing the number of clusters k

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

MSE on test vs K for K−means

I As in the case of PCA, larger k will give better value of the objective

I Choose suitable k by identifying a ‘‘kink’’ or ‘‘elbow’’ in the curve

(Source: Kevin Murphy, Chap 11)
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Multidimensional Scaling (MDS)

In certain cases, it may be easier to define (dis)similarity between objects
than embed them in Euclidean space

Algorithms such as k-means require points to be in Euclidean space

Ideal Setting: Suppose for someN points in RD we are given all pairwise
Euclidean distances in a matrix D

Can we reconstruct x1, . . . ,xN , i.e., all of X?
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Multidimensional Scaling

Distances are preserved under translation, rotation, reflection, etc.

We cannot recover X exactly; we can aim to determine X up to these
transformations

IfDij is the distance between points xi and xj , then

D2
ij = ‖xi − xj‖2

= xT
i xi − 2xT

i xj + xT
j xj

=Mii − 2Mij +Mjj

Here M = XXT is theN ×N matrix of dot products

Exercise: Show that assuming
∑

i xi = 0, M can be recovered from D
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Multidimensional Scaling

Consider the (full) SVD: X = UΣVT

We can write M as
M = XXT = UΣΣTUT

Starting from M, we can reconstruct X̃ using the eigendecomposition of
M

M = UΛUT

Because, M is symmetric and positive semi-definite, UT = U−1 and all
entries of (diagonal matrix) Λ are non-negative

Let X̃ = UΛ1/2

If we are satisfied with approximate reconstruction, we can use truncated
eigendecomposition
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Multidimensional Scaling: Additional Comments

In general if you define (dis)similarities on objects such as text documents,
genetic sequences, etc., we cannot be sure that the generated similarity
matrix M will be positive semi-definite or that the dissimilarity matrix D is
a valid squared Euclidean distance

If such cases, we cannot always find a Euclidean embeddding that recovers
the (dis)similarities exactly

Minimize stress function: Find z1, . . . , zN that minimizes

S(Z) =
∑
i 6=j

(Dij − ‖zi − zj‖)2

Several other types of stress functions can be used
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Multidimensional Scaling: Summary

I In certain applications, it may be easier to define pairwise similarities or
distances, rather than construct a Euclidean embedding of discrete
objects, e.g., genetic data, text data, etc.

I Many machine learning algorithms require (or are more naturally
expressed with) data in some Euclidean space

I Multidimensional Scaling gives a way to find an embedding of the data in
Euclidean space that (approximately) respects the original
distance/similarity values

19



Outline

Clustering Objective

k-Means Formulation of Clustering

Multidimensional Scaling

Hierarchical Clustering

Spectral Clustering



Hierarchical Clustering

Hierarchical structured data exists all around us

I Measurements of different species and individuals within species

I Top-level and low-level categories in news articles

I Country, county, town level data

Two Algorithmic Strategies for Clustering

I Agglomerative: Bottom-up, clusters formed by merging smaller
clusters

I Divisive: Top-down, clusters formed by splitting larger clusters

Visualise this as a dendrogram or tree
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Measuring Dissimilarity at Cluster Level

To find hierarchical clusters we need to define dissimilarity at cluster level,
not just at datapoints

Suppose we have dissimilarity at datapoint level, e.g., d(x,x′) = ‖x− x′‖

Different ways to define dissimilarity at cluster level, say C and C′

I Single Linkage
D(C,C′) = min

x∈C,x′∈C′
d(x,x′)

I Complete Linkage

D(C,C′) = max
x∈C,x′∈C′

d(x,x′)

I Average Linkage

D(C,C′) =
1

|C| · |C′|
∑

x∈C,x′∈C′

d(x,x′)
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Measuring Dissimilarity at Cluster Level
I Single Linkage

D(C,C′) = min
x∈C,x′∈C′

d(x,x′)

I Complete Linkage

D(C,C′) = max
x∈C,x′∈C′

d(x,x′)

I Average Linkage

D(C,C′) =
1

|C| · |C′|
∑

x∈C,x′∈C′

d(x,x′)
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Linkage-based Clustering Algorithm

1. Initialise clusters as singletons Ci = {i}

2. Initialise clusters available for merging S = {1, . . . , N}

3. Repeat

a. Pick 2 most similar clusters, (j, k) = argmin
j,k∈S

D(j, k)

b. Let Cl = Cj ∪ Ck

c. If Cl = {1, . . . , N}, break;

d. Set S = (S \ {j, k}) ∪ {l}

e. UpdateD(i, l) for all i ∈ S (using desired linkage property)
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Hierarchical Clustering: Dendogram

Outputs of hierarchical clustering
algorithms are typically represented
using dendrograms

A dendrogram is a binary tree,
representing clusters as they were
merged

The height of a node represents
dissimilarity

Cutting the dendrogram at some
level gives a partition of data
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Spectral Clustering
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Spectral Clustering: Limitations of k-Means
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Limitations of k-means

k-means will typically form clusters that are spherical, elliptical, convex

Kernel PCA followed by k-means can result in better clusters

Spectral clustering is a (related) alternative that often works better
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Spectral Clustering

Construct a graph from data; one node for every point in dataset

Use similarity measure, e.g., si,j = exp(−‖xi − xj‖2/σ)

Construct mutualK-nearest neighbour graph, i.e., (i, j) is an edge if either
i is among theK nearest neighbours of j or vice versa

The weight of edge (i, j), if it exists is si,j
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Spectral Clustering
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Spectral Clustering

Use graph partitioning algorithms

Mincut can give bad cuts (only one
node on one side of the cut)

Multi-way cuts, balanced cuts, are
typically NP-hard to compute

Relaxations of these problems give
eigenvectors of Laplacian

W is the weighted adjacency matrix

D is (diagonal) degree matrix:
Dii =

∑
j Wij

Laplacian L = D−W

Normalised Laplacian:
L̃ = I−D−1W
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Spectral Clustering: Simple Example

1

2 3

4 5

6

1

1

1

1

1 1

Suppose all edge weights
are 1 (0 for missing edges)

The weighted adjacency matrix, the degree
matrix and the Laplacian are given by

W =


0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0



D =


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2



L = D−W =


2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2
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Spectral Clustering: Simple Example

1

2 3

4 5

6

1

1

1

1

1 1

Suppose all edge weights
are 1 (0 for missing edges)

Let us consider some eigenvectors of L

L = D−W =


2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2


v1 = [1, 1, 1, 1, 1, 1]T is an eigenvector with

eigenvalue 0

v2 = [1, 1, 1,−1,−1,−1]T is also an eigenvector
with eigenvalue 0

α1v1 + α2v2 for any α1, α2 is also an eigenvector
with eigenvalue 0

We can use the matrix [v1v2] as theN × 2
feature matrix and perform k-means
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Spectral Clustering: Simple Example

1

2 3

4 5

6

1

1

1

1

1 1

Suppose all edge weights
are 1 (0 for missing edges)
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Spectral Clustering: Simple Example

1

2 3

4 5

6

1.1

1

0.9

1.1

0.9 1

0.1 0.2

Suppose all edge weights
are 1 (0 for missing edges)

Let us consider some eigenvectors of L

L = D−W =


2 −1.1 −0.9 0 0 0

−1.1 2.2 −1 −0.1 0 0
−0.9 −1 2.1 0 −0.2 0
0 −0.1 0 2.1 −1.1 −0.9
0 0 −0.2 −1.1 2.3 −1
0 0 0 −0.9 −1 1.9


When the weights are slightly perturbed,
v1 = [1, . . . , 1]T is still an eigenvector with
eigenvalue 1

We can’t compute the second eigenvector v2 by
hand

Nevertheless, we expect that the eigenspace
corresponding to similar eigenvalues is relatively
stable

We can still use the matrix [v1v2] as theN × 2
feature matrix and perform k-means
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Spectral Clustering: Simple Example

1

2 3

4 5

6

1.1

1

0.9

1.1

0.9 1

0.1 0.2

Suppose all edge weights
are 1 (0 for missing edges)
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Spectral Clustering Algorithm

Input: Weighted graph with weighted adjacency matrix W

1. Construct Laplacian L = D−W

2. Find v1 = 1,v2, . . . ,vl+1 the k-eigenvectors

3. Construct theN × l feature matrix Vl = [v2, · · · ,vl]

4. Apply clustering algorithm using Vl as features, e.g., k-means

Note: If the degrees of nodes are not balanced, using the normalised
Laplacian, L̃ = I−D−1W may be a better idea
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Spectral Clustering
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Summary: Clustering

Clustering is grouping together similar data in a larger collection of
heterogeneous data

Definition of good clusters often user-dependent

Clustering algorithms in feature space, e.g., k-Means

Clustering algorithms that only use (dis)similarities: k-Medoids,
hierarchical clustering

Spectral clustering when clusters may be non-convex
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