
Machine Learning
Hilary Term 2016

Week 3

Problem Sheet 1

1 Nearest Neighbour Classification

In class we studied linear regression, where we model the output y = w · x + noise, where w
is the parameter vector to be learnt and x is the input. Nearest neighbour (NN) is a different
approach to learning from data. Suppose we are given m points (x1, y1), . . . (xm, ym); for a
parameter k and given a new point x∗, the k-NN approach does the following: find xj1 , . . .xjk
the k-closest points to x∗, then compute

ŷ∗ =

k∑
l=1

αjlyjl ,

where αjl are weights inversely proportional to the distance between x and xjl .

1. What advantage does the k-NN approach offer over linear regression?

2. How many parameters does the nearest neighbour model have? How much memory do
you need to store the model? What is the computational cost of producing ŷ∗?

3. In this part, we’ll look at the setting where the vectors x are points on the boolean
hypercube, i.e., x ∈ {0, 1}n. Fix x∗ = (0, 0, . . . , 0) to be the origin and imagine that data
consists of points drawn uniformly at random from the boolean hypercube. What is the
distribution of the Hamming distance of data points from x∗? What happens as n→∞?
(Hint: Use the central limit theorem.)

4. Let us now fix some numbers. Suppose the dimension of the data n = 10, 000; let x∗ =
(0, 0, . . . , 0) and suppose we generated m = 10, 000 data points. What do you expect the
distance of x∗ from the nearest data-point to be? the furthest? How large does m need
to be to get points that are reasonably close to x∗, say within Hamming distance 50?

Remark: You do not have to write precise numbers or even mathematical expressions for the an-
swers to part 4 above. Make sure you understand the behaviour qualitatively. The phenomenon
explored in the last two parts of the question is referred to as the curse of dimensionality.

2 Normalization constant for a 1D Gaussian

The normalization constant for a zero-mean Gaussian is given by

Z =

∫ ∞
−∞

exp

(
− x2

2σ2

)
dx.

Page 1



Machine Learning
Hilary Term 2016

Week 3

To compute this, consider its square

Z2 =

∫ ∞
−∞

∫ ∞
−∞

exp

(
−x

2 + y2

2σ2

)
dxdy.

Let us change variables from cartesian (x, y) to polar (r, θ) using x = r cos θ and y = r sin θ.
Since dxdy = rdrdθ (recall that r is the determinant of the Jacobian in 2D) and cos2θ+sin2 θ =
1, we have

Z2 =

∫ 2π

0

∫ ∞
0

r exp

(
− r2

2σ2

)
drdθ

Evaluate this integral and hence show Z =
√

2πσ2.

Hint 1: Separate the integral into a product of two integrands, the first of which (involving
dθ) is constant, so is easy.

Hint 2: If u = e−r
2/2σ2

then du/dr = − 1
σ2 re

−r2/2σ2
, so the second integral is also easy (since∫

u′(r)dr = u(r)).

3 Reducing the cost of linear regression for large n, small m

The ridge method is a regularized version of least squares with objective function:

min
w∈Rn

‖y −Xw‖22 + λ‖w‖22

Here λ is a scalar, the input matrix X ∈ Rm×n and the output vector y ∈ Rm. The parameter
vector w ∈ Rn is obtained by differentiating the cost function, yielding the normal equations

(XTX + λIn)w = XTy,

where In is the n×n identity matrix. The predictions ŷ = ŷ(X∗) for new test points X∗ ∈ Rm∗×n

are obtained by evaluation the hyperplane

ŷ = X∗w = X∗(X
TX + λIn)−1XTy = Hy.

The matrix H is known as the hat matrix because it puts a “hat” on y.

1. Show that the solution can be written as w = XT w̃, where w̃ = λ−1(y −Xw).

2. Show that w̃ can also be written as follows: w̃ = (XXT + λIm)−1y and, hence the
predictions can be written as follows:

ŷ = X∗w = X∗X
T w̃ = [X∗X

T ]([XXT ] + λIm)−1y.

(This an awesome trick because if m = 20 patients with n = 10, 000 gene measurements,
the computation of w̃ only requires inverting the m×m matrix, while the direct compu-
tation of w would have required the inversion of an n× n matrix.)

Page 2



Machine Learning
Hilary Term 2016

Week 3

4 Logical Gates Using Perceptrons

Recall that a perceptron with input features x1, . . . , xn, weights w1, . . . , wn and bias w0 outputs
the value:

y =

{
1 if w0 +

∑n
i=1wixi ≥ 0

0 otherwise

1. Suppose there are at most two inputs and the inputs always take binary values, i.e., xi ∈
{0, 1}. Show how to construct and, or and not gates by suitably adjusting weights.

2. The constructions for and and or gates required only the bias term w0 to be negative,
all other weights were positive. Can you achieve a similar construction for the not gate?
Why?

3. Can you construct an xor (exclusive or) gate? If not, give reasons.

4. Often, instead of using a hard threshold we would like to use a continuous approximation.
Recall the hyperbolic tangent function tanh(z) = ez−e−z

ez+e−z . We consider another type of
artificial neuron whose output is defined as

y = tanh

(
w0 +

n∑
i=1

wixi

)
.

Suppose you treat outputs above 0.99 as true and those below −0.99 as false. Show that
similar constructions to ones you had earlier can still be used to construct logic gates.

Page 3


	Nearest Neighbour Classification
	Normalization constant for a 1D Gaussian
	Reducing the cost of linear regression for large n, small m
	Logical Gates Using Perceptrons

