
Machine Learning
Hilary Term 2016

Week 5

Problem Sheet 3

1 Bayesian View of Ridge and Lasso

Recall that the linear model for given parameter vector w and input x is defined as

y ∼ N (xTw, σ2)

As usual we will not model the inputs xi as coming from some probability distribution, but
consider them as fixed. Also, we will consider σ to be fixed and known. Thus, for data
〈(xi, yi)〉mi=1 the likelihood given w (and the datapoints xi and σ) can be expressed as

p(y | w; X, σ) = N (y | Xw, σ2Im)

We will assume for this problem that the data, both inputs and outputs, has been centered. The
notation N (y | Xw, σ2Im) means that y is distributed according to the multivariate normal
density N (Xw, σ2Im). In class we studied two forms of regularization, the ridge and Lasso,
with the following objective functions:

Lridge(w) = (Xw − y)T (Xw − y) + λwTw

Llasso(w) = (Xw − y)T (Xw − y) + λ‖w‖1

where ‖w‖1 =
∑n

i=1 |wi|.

1. In class we discussed how the estimate obtained from ridge regression can be viewed as the
maximum a posteriori (MAP) estimate with a suitably chosen prior on w, i.e., p(w) =
N (w | 0, τ2In). Make precise the relationship between σ, τ and λ for which the equivalence
holds. Calculate the posterior distribution (without the normalization constant) and show
that it takes the form of a multivariate Gaussian distribution. Thus in this case, you can
actually explicitly compute the normalization constant of the posterior.

2. Not required for submission: Using the above posterior, for a new point xnew calculate the
distribution p(ynew | xnew,D = 〈(xi, yi)〉mi=1) in the full Bayesian sense. This distribution
is also a normal distribution with mean xT

newwmap and variance that dependes on xnew.
Explain why the variance depends on how different xnew is to the points in the dataset.
(Hint: You will have to use properties of the eigendecomposition of the matrix that appears
in the expression for variance.)

3. Describe how you would choose a suitable prior over w so as to view the Lasso estimate as
a MAP estimate. Describe the relationship between λ, σ and any parameters you choose
to represent the prior.
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2 Optimization Methods for `1-regularization

1. Show that if you use the absolute loss function with the regularization term corresponding
to Lasso (called `1 regularization as the penalty is on the `1 norm of the parameter vector),
the optimization problem can be solved using linear programming. The objective function
is:

L(w) =

m∑
i=1

|xT
i w − yi|+ λ

n∑
i=1

|wi|

2. In case we use the squared loss, we can no longer use linear programming. Write the
sub-gradient descent update rule with step size η, i.e., write how you would obtain wt+1

using wt and an (explicitly computed) subgradient of the objective function at wt and
step-size η. The objective function is:

L(w) =

m∑
i=1

(xT
i w − yi)2 + λ

n∑
i=1

|wi|

3 Linear algebra revision: Eigen-decompositions

Once you start looking at raw data, one of the first things you notice is how redundant it
often is. In images, it’s often not necessary to keep track of the exact value of every pixel; in
text, you don’t always need the counts of every word. Correlations among variables also create
redundancy. For example, if every time a gene, say A, is expressed another gene B is also
expressed, then to build a tool that predicts patient recovery rate from gene expression data, it
seems reasonable to remove either A or B. Most situations are not as clear-cut.

In this question, we’ll look at eigenvalue methods for factoring and projecting data matrices
(images, document collections, image collections), with an eye to one of the most common uses:
Converting a high-dimensional data matrix to a lower-dimensional one, while minimizing the
loss of information.

The Singular Value Decomposition (SVD) is a matrix factorization that has many applica-
tions in information retrieval, collaborative filtering, least-squares problems and image process-
ing.

Let X be an n × n matrix of real numbers; that is X ∈ Rn×n. Assume that X has n
eigenvalue-eigenvector pairs (λi,qi):

Xqi = λiqi i = 1, . . . , n

If we place the eigenvalues λi ∈ R into a diagonal matrix Λ and gather the eigenvectors qi ∈ Rn

into a matrix Q, then the eigenvalue decomposition of X is given by

X
[

q1 q2 . . . qn

]
=
[

q1 q2 . . . qn

]

σ1

σ2
. . .

σn

 (1)
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or, equivalently,
X = QΛQ−1.

For a symmetric matrix, i.e. X = XT , one can show that X = QΛQT . But what if X is not
a square matrix? Then the SVD comes to the rescue. Given X ∈ Rm×n, the SVD of X is a
factorization of the form

X = UΣVT .

These matrices have some interesting properties:

• Σ ∈ Rn×n is diagonal with positive entries (singular values σ in the diagonal).

• U ∈ Rm×n has orthonormal columns: uT
i uj = 1 only when i = j and 0 otherwise.

• V ∈ Rn×n has orthonormal columns and rows. That is, V is an orthogonal matrix, so
V−1 = VT .

Often, U is m-by-m, not m-by-n. The extra columns are added by a process of orthogonal-
ization. To ensure that dimensions still match, a block of zeros is added to Σ. For our purposes,
however, we will only consider the version where U is m-by-n, which is known as the thin-SVD.

It will turn out useful to introduce the vector notation:

Xvj = σjuj j = 1, 2, . . . , n

where u ∈ Rm are the left singular vectors, σ ∈ [0,∞) are the singular values and v ∈ Rn are
the right singular vectors. That is,

X
[

v1 v2 . . . vn

]
=
[

u1 u2 . . . un

]

σ1

σ2
. . .

σn

 (2)

or XV = UΣ. Note that there is no assumption that m ≥ n or that X has full rank. In
addition, all diagonal elements of Σ are non-negative and in non-increasing order:

σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0

where p = min (m,n).

Question: Outline a procedure for computing the SVD of a matrix X. Hint: assume you can
find the eigenvalue decompositions of the symmetric matrices XTX and XXT .
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4 Maximum Likelihood for Logistic Regression

Consider the sigmoid function, defined as σ(z) = 1
1+e−z . Note that limz→−∞ σ(z) = 0 and

limz→∞ σ(z) = 1. Thus, for binary classification problems, we can compose a linear function
with the sigmoid function to model the probability that a given input x belongs to one of the
two classes {0, 1}. More precisely, for parameter vector w ∈ Rn, and input vector x ∈ Rn,1 the
label y ∈ {0, 1} is given by the following model:

Pr(y = 1 | w,x) = σ(xTw)

Pr(y = 0 | w,x) = 1− σ(xTw)

1. Show that the derivative of σ, σ′(z) = σ(z)(1− σ(z))

2. Suppose you have data 〈(xi, yi)〉mi=1. We consider the inputs xi as fixed and only model
the labels yi as random variables. For model parameter w (and the fixed xis) write the
likelihood of observing the labels y1, . . . ym. Note that each yi ∈ {0, 1}.

3. Compute the gradient and Hessian of the negative log likelihood. Show that the Hessian
is positive semi-definite.

4. What algorithm would you use to find the maximum likelihood estimate and what can
you say about the obtained solution?

1As always we will assume that an extra dimension which takes value 1 on every data point has been added
to avoid dealing with the constant term separately.
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