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Outline

Supervised Learning Setting

I Data consists of input- output pairs

I Inputs (also covariates, independent variables, predictors, features)

I Output (also variates, dependent variable, targets, labels)

Goals

I Understand the supervised learning setting

I Understand linear regression (aka least squares)

I Derivation of the least squares estimate
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Why study linear regression?

I ‘‘Least squares’’ is at least 200 years old (Legendre, Gauss)

I Francis Galton: Regression to mediocrity (1886)

I Often real processes can be approximated by linear models

I More complicated models require understanding linear regression

I Closed form analytic solutions can be obtained

I Many key notions of machine learning can be introduced
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A toy example

Want to predict commute time into city centre

What variables would be useful?
I Distance to city centre
I Day of the week

Data

dist (km) day commute time (min)
2.7 fri 25
4.1 mon 33
1.0 sun 15
5.2 tue 45
2.8 sat 22
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Linear Models

Suppose the input is a vector x ∈ Rn and the output is y ∈ R.

We have data 〈xi, yi〉mi=1

Notation: dimension n, size of datasetm, column vectors

Linear model:
y = w0 + x1w1 + · · ·+ xnwn + noise
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Linear Models

Linear model:
y = w0 + x1w1 + · · ·+ xnwn + noise

Input encoding: mon-sun has to be converted to a number
I monday: 0, tuesday: 1, . . . , sunday: 6

I 0 if weekend, 1 if weekday

Assume x1 = 1 for all data. So model can be succinctly represented as

y = x ·w + noise = ŷ + noise
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Learning Linear Models

Data: 〈(xi, yi)〉mi=1

Model parameterw

Training phase: (learning/estimation ofw)

Testing phase: (predict ŷm+1 = xm+1 ·w)
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ŷ(x) = w0 + xw1

L(w) = L(w0, w1) =
m∑
i=1

(ŷi − yi)
2 =

m∑
i=1

(w0 + xiw1 − yi)
2
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Linear Regression: General Case

Recall that the linear model is

ŷi =

n∑
j=1

xijwj

where we assume that xi1 = 1 for all xi. So w1 is the bias or offset term.

Expressing everything in matrix notation

ŷ = Xw

Here we have ŷ ∈ Rm×1,X ∈ Rm×n andw ∈ Rn×1

ŷm×1
ŷ1
ŷ2
...

ŷm

 =

Xm×n
xT
1

xT
2

...
xT
m


wn×1w1

...
wn


=

Xm×n
x11 · · · x1n

x21 · · · x2n

...
. . .

...
xm1 · · · xmn


wn×1w1

...
wn


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Back to toy example
dist (km) weekday? commute time (min)

2.7 1 (fri) 25
4.1 1 (mon) 33
1.0 0 (sun) 15
5.2 1 (tue) 45
2.8 0 (sat) 22

We havem = 5, n = 3 and so we get

y =


25
33
15
45
22

 , X =


1 2.7 1
1 4.1 1
1 1.0 0
1 5.2 1
1 2.8 0

 , w =

w1

w2

w3



Suppose we getw = [6, 6.5, 2]T . Then our predictions would be

ŷ =


25.55
34.65
12.5
41.8
24.2


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Linear Prediction

Suppose someone lives 4.8km from city centre, how long would they take
to get in on a Wednesday?

We can write xnew = [1, 4.8, 1]T and then compute

ŷnew =
[
1 4.8 1

]  6
6.5
2

 = 39.2minutes

Interpreting regression coefficients

11



Linear Prediction

Suppose someone lives 4.8km from city centre, how long would they take
to get in on a Wednesday?

We can write xnew = [1, 4.8, 1]T and then compute

ŷnew =
[
1 4.8 1

]  6
6.5
2

 = 39.2minutes

Interpreting regression coefficients

11



Minimizing the Squared Error

L(w) =
∑m

i=1(x
T
i w − yi)

2 = (Xw − y)T (Xw − y)

0.0 0.2 0.4 0.6 0.8 1.0 0.00.2
0.40.6

0.81.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6
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Finding Optimal Solutions using Calculus

L(w) =
∑m

i=1(x
T
i w − yi)

2 = (Xw − y)T (Xw − y)
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Differentiating Matrix Expressions

L(w) =
∑m

i=1(x
T
i w − yi)

2 = (Xw − y)T (Xw − y)

Rules

(i) ∇wcTw = c
(ii) ∇wwTAw = Aw +ATw (= 2Aw for symmetricA)
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Solution to Linear Regression

L(w) =
∑m

i=1(x
T
i w − yi)

2 = (Xw − y)T (Xw − y)

w = (XTX)−1XTy

What if we had one-hot encoding for days?
I 7 binary features, exactly one of them is 1
I x1 = 1, x2 =dist, x3 =mon?, x4 = tue?, . . . , x9 = sun?
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Linear Regression as Solving Noisy Linear Systems

Without noise:Xw = y

Linear regression finds ŷ that makes systemXw = ŷ feasible

And ŷ is closest to y in Euclidean distance
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Other Loss Functions

L(w) =
m∑
i=1

|xT
i w − yi|

17



Loss Functions

I Consider ` : R+ → R+ satisfying

1. `(0) = 0
2. ` is non-decreasing

I L(w) =

m∑
i=1

`(|xT
i ·w − yi|)

`(z) = |z|2 `(z) = |z|4 `(z) = |z|10

`(z) = |z| `(z) =
√
|z| `(z) = |z|0.01
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Optimization with different loss functions

L(w) =
∑
|ŷi − yi|2 L(w) =

∑
|ŷi − yi|

L(w) =
∑√

|ŷi − yi| L(w) =
∑
|ŷi − yi|0.1
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Probabilistic Modelling

I Linear Model: y = xTw∗ + noise (for somew∗)

I E[y | x,w∗] = xTw∗

I Data 〈(xi, yi)〉mi=1

I Unbiased estimator ŵ = (XTX)−1XTy
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Next Time

I Maximum likelihood estimation

I Make sure you are familiar with the Gaussian distribution

I Non-linearity using basis expansion

I What to do when you have more features than data?
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