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» Inputs (also covariates, independent variables, predictors, features)

» Output (also variates, dependent variable, targets, labels)
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Goals
» Understand the supervised learning setting

» Understand linear regression (aka least squares)

» Derivation of the least squares estimate



Why study linear regression?

» "“Least squares” is at least 200 years old (Legendre, Gauss)

» Francis Galton: Regression to mediocrity (1886)
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Why study linear regression?

» "“Least squares” is at least 200 years old (Legendre, Gauss)

» Francis Galton: Regression to mediocrity (1886)

» Often real processes can be approximated by linear models

» More complicated models require understanding linear regression

» Closed form analytic solutions can be obtained

» Many key notions of machine learning can be introduced



A toy example

Want to predict commute time into city centre

What variables would be useful?

» Distance to city centre
» Day of the week

Data
dist (km) day \ commute time (min)
2.7 Fri 25
41 mon 33
1.0 sun 15
5.2 tue 45

2.8 sat 22




Linear Models

Suppose the input is a vector x € R™ and the outputis y € R.

We have data (x;,y;)i%,

Notation: dimension n, size of dataset m, column vectors

Linear model:
Yy =wo + x1w1 + - - - + Trw, + Noise
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Input encoding: mon-sun has to be converted to a number
» monday: 0, tuesday: 1,.. ., sunday: 6

» 0if weekend, 1 if weekday



Linear Models

Linear model:
Yy =wo + T1w1 + - - + Tpwn + NOISE

Input encoding: mon-sun has to be converted to a number
» monday: 0, tuesday: 1,.. ., sunday: 6

» 0if weekend, 1 if weekday

Assume x; = 1 for all data. So model can be succinctly represented as

Yy = X - w + noise = ¢ + noise
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Learning Linear Models

Data: ((Xzy yz)ﬁil
Model parameter w

Training phase: (learning/estimation of w)

Testing phase: (predict §im+1 = Xm+1 - W)



g(x) = wo + zw1

L(w) = L(wo,w1) = Z(ﬁz — y¢)2 = Z(’wo + x;wr — yi)2

=1 1=1
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Linear Regression: General Case

Recall that the linear model is

where we assume that z;; = 1 for all x;. So w is the bias or offset term.



Linear Regression: General Case

Recall that the linear model is

where we assume that z;; = 1 for all x;. So w is the bias or offset term.

Expressing everything in matrix notation
y = Xw

Here we have §y € R™*!, X ¢ R™*" and w € R"*!

Ymx1 Xmxn Wnx1 Xmxn
~ T
Y1 X1 w1 11 ot Tin
~ T
Y2 X2 : 21 o T2n
: W,
-~ T

Ym Xm Tml R Tmn

Wnx1
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Back to toy example

dist (km) weekday? | commute time (min)
2.7 1 (Fri) 25
4.1 1 (mon) 33
1.0 0 (sun) 15
5.2 1 (tue) 45
2.8 0 (sat) 22

We have m = 5, n = 3 and so we get

25
33
15
45
22

1
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5.2
2.8
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Back to toy example
dist (km) weekday? | commute time (min)

2.7 1 (Fri) 25
4.1 1 (mon) 33
1.0 0 (sun) 15
5.2 1 (tue) 45
2.8 0 (sat) 22

We have m = 5, n = 3 and so we get

25 1 27 1

33 1 41 1 w1
y=[15], X=]|1 1.0 Of, w= |ws

45 1 52 1 w3

22 1 28 0

Suppose we get w = [6,6.5,2]7. Then our predictions would be

25.55
34.65
y=1125
41.8
24.2



Linear Prediction

Suppose someone lives 4.8km from city centre, how long would they take
to getin on a Wednesday?

We can write xnew = [1,4.8,1]7 and then compute

6
Jnew = [1 4.8 1] |6.5] = 39.2 minutes
2
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Interpreting regression coefficients



Minimizing the Squared Error

L(w) =370, (5w —yi)* = (Xw —y)" (Xw —y)



Minimizing the Squared Error

Liw) =" (x{w—y)=Xw—y) (Xw-y)




Finding Optimal Solutions using Calculus

Liw) =" (x{w—y)=Xw—y) (Xw-y)



Differentiating Matrix Expressions

Liw) =" (xiw—y:) = (Xw —y)" (Xw —y)
Rules
(i) VwcTw=c
(i) VwwTAw = Aw + ATw (= 2Aw for symmetric A)



Solution to Linear Regression

Liw) =" (x{w—y)=Xw—y) (Xw-y)

w=(XTX)"'X"y



Solution to Linear Regression
Liw) = 327, (x{w —4:)? = (Xw — y)" (Xw —y)
w=(XTX)"'X"y

What if we had one-hot encoding for days?

» 7 binary features, exactly one of them is 1
> 1 = 1, 2o =dist, z3 = mon?, z4 =tue?, ..., zo =sun?



Linear Regression as Solving Noisy Linear Systems

Without noise: Xw =y
Linear regression finds y that makes system Xw = y feasible

And y is closest to y in Euclidean distance



Other Loss Functions

L(w) = |xiw — yi
i=1



Loss Functions

» Consider ¢ : RT — R™ satisfying
1. £(0) =0
2. £ is non-decreasing



Loss Functions

» Consider ¢ : Rt — R satisfying

1. 60) =0

2. £ is non-decreasing

Do w —yil)
i=1
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Optimization with different loss functions




Probabilistic Modelling

» Linear Model: y = xTw™ + noise (for some w*)
» Ely | x,w']=x"w"

» Data ((x;,¥i))iz1

» Unbiased estimator w = (X7X)™'X"y

20



Next Time

Maximum likelihood estimation

v

Make sure you are familiar with the Gaussian distribution

v

v

Non-linearity using basis expansion

v

What to do when you have more features than data?
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