Machine learning - HT 2016
2. Linear Regression

Varun Kanade

University of Oxford
January 22, 2016
Outline

Supervised Learning Setting
- Data consists of input-output pairs
- Inputs (also covariates, independent variables, predictors, features)
- Output (also variates, dependent variable, targets, labels)

Goals
- Understand the supervised learning setting
- Understand linear regression (aka least squares)
- Derivation of the least squares estimate
Why study linear regression?

- “Least squares” is at least 200 years old (Legendre, Gauss)
- Francis Galton: Regression to mediocrity (1886)
- Often real processes can be approximated by linear models
- More complicated models require understanding linear regression
- Closed form analytic solutions can be obtained
- Many key notions of machine learning can be introduced
A toy example

Want to predict commute time into city centre

What variables would be useful?
- Distance to city centre
- Day of the week

Data

<table>
<thead>
<tr>
<th>dist (km)</th>
<th>day</th>
<th>commute time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>fri</td>
<td>25</td>
</tr>
<tr>
<td>4.1</td>
<td>mon</td>
<td>33</td>
</tr>
<tr>
<td>1.0</td>
<td>sun</td>
<td>15</td>
</tr>
<tr>
<td>5.2</td>
<td>tue</td>
<td>45</td>
</tr>
<tr>
<td>2.8</td>
<td>sat</td>
<td>22</td>
</tr>
</tbody>
</table>
Suppose the input is a vector $x \in \mathbb{R}^n$ and the output is $y \in \mathbb{R}$.

We have data $\langle x_i, y_i \rangle_{i=1}^m$

Notation: dimension n, size of dataset m, column vectors

Linear model:

$$y = w_0 + x_1 w_1 + \cdots + x_n w_n + \text{noise}$$
Linear Models

Linear model:

\[y = w_0 + x_1 w_1 + \cdots + x_n w_n + \text{noise} \]

Input encoding: mon-sun has to be converted to a number
- monday: 0, tuesday: 1, \ldots, sunday: 6
- 0 if weekend, 1 if weekday

Assume \(x_1 = 1 \) for all data. So model can be succinctly represented as

\[y = x \cdot w + \text{noise} = \hat{y} + \text{noise} \]

\(x \in \mathbb{R}^n, w \in \mathbb{R}^n, \quad x \cdot w = \sum_{i=1}^{n} x_i \cdot w_i \)
Learning Linear Models

Data: \(\{(x_i, y_i)\}_{i=1}^m \)

Model parameter \(w \)

Training phase: (learning/estimation of \(w \))

\[
\langle (x_i, y_i) \rangle_{i=1}^m \\
\xrightarrow{\text{DATA}} \\
\xrightarrow{\text{ALGORITHM}} \\
\xrightarrow{w \ (\text{estimate})}
\]

Testing phase: (predict \(\hat{y}_{m+1} = x_{m+1} \cdot w \))

Should keep aside some data for testing
\[\hat{y}(x) = w_0 + xw_1 \]

\[L(w) = L(w_0, w_1) = \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{m} (w_0 + x_i w_1 - y_i)^2 \]

\[\text{Loss function} \]

\[\text{Objective} \]

\[\text{Energy} \]

\[\text{RSS: Residual Sum of Squares} \]
\[\hat{y}(x) = w_0 + xw_1 \]

\[L(w) = L(w_0, w_1) = \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{m} (w_0 + x_iw_1 - y_i)^2 \]

\[
\frac{1}{2m} \frac{\partial L}{\partial w_0} = \frac{1}{m} \sum_{i=1}^{m} \left(w_0 + w_1 x_i - y_i \right) = 0
\]

\[\text{i.e. } w_0 + w_1 \left(\frac{1}{m} \sum_{i=1}^{m} x_i \right) = \frac{1}{m} \sum_{i=1}^{m} y_i \quad (1) \]

\[
\frac{1}{2m} \frac{\partial L}{\partial w_1} = \frac{1}{m} \sum_{i=0}^{m} \left(w_0 + w_1 x_i - y_i \right) x_i = 0
\]

\[\text{i.e. } w_0 \left(\frac{1}{m} \sum_{i=1}^{m} x_i \right) + w_1 \left(\frac{1}{m} \sum_{i=1}^{m} x_i^2 \right) = \frac{1}{m} \sum_{i=1}^{m} x_i y_i \quad (2) \]

Solving for \(w_1 \):

\[
w_1 = \frac{\frac{1}{m} \sum_{i=1}^{m} x_i y_i - \left(\frac{1}{m} \sum_{i=1}^{m} x_i \right) \left(\frac{1}{m} \sum_{i=1}^{m} y_i \right)}{\frac{1}{m} \sum_{i=1}^{m} x_i^2 - \left(\frac{1}{m} \sum_{i=1}^{m} x_i \right)^2}
\]
Linear Regression: General Case

Recall that the linear model is

\[\hat{y}_i = \sum_{j=1}^{n} x_{ij} w_j \]

where we assume that \(x_{i1} = 1 \) for all \(x_i \). So \(w_1 \) is the bias or offset term.

Expressing everything in matrix notation

\[\hat{y} = Xw \]

Here we have \(\hat{y} \in \mathbb{R}^{m \times 1} \), \(X \in \mathbb{R}^{m \times n} \) and \(w \in \mathbb{R}^{n \times 1} \)
We have $m = 5$, $n = 3$ and so we get

\[
y = \begin{bmatrix} 25 \\ 33 \\ 15 \\ 45 \\ 22 \end{bmatrix}, \quad X = \begin{bmatrix} 1 & 2.7 & 1 \\ 1 & 4.1 & 1 \\ 1 & 1.0 & 0 \\ 1 & 5.2 & 1 \\ 1 & 2.8 & 0 \end{bmatrix}, \quad w = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}
\]

Suppose we get $w = [6, 6.5, 2]^T$. Then our predictions would be

\[
\hat{y} = \begin{bmatrix} 25.55 \\ 34.65 \\ 12.5 \\ 41.8 \\ 24.2 \end{bmatrix}
\]
Linear Prediction

Suppose someone lives 4.8km from city centre, how long would they take to get in on a Wednesday?

We can write $x_{\text{new}} = [1, 4.8, 1]^T$ and then compute

$$\hat{y}_{\text{new}} = [1 \ 4.8 \ 1] \begin{bmatrix} 6 \\ 6.5 \\ 2 \end{bmatrix} = 39.2 \text{ minutes}$$

Interpreting regression coefficients

Using regression coefficients to explain is not straightforward when there are associations among variables.
Minimizing the Squared Error

\[L(w) = \sum_{i=1}^{m} (x_i^T w - y_i)^2 = (Xw - y)^T(Xw - y) \]
Finding Optimal Solutions using Calculus

\[L(w) = \sum_{i=1}^{m} (x_i^T w - y_i)^2 = (Xw - y)^T (Xw - y) \]

\[Xw - y = \begin{pmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_m^T \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} - \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} x_1^T w - y_1 \\ x_2^T w - y_2 \\ \vdots \\ x_m^T w - y_m \end{pmatrix} \]

Can write n equations

\[\frac{\partial L}{\partial w_1} = \ldots = 0 \]

\[\frac{\partial L}{\partial w_n} = \ldots = 0 \]

INSTEAD LEARN

MATRIIX DIFFERENTIATION
Differentiating Matrix Expressions

\[L(w) = \sum_{i=1}^{m} (x_i^T w - y_i)^2 = (Xw - y)^T(Xw - y) \]

Rules

(i) \[\nabla_w c^T w = c \] (Linear Form: \(\sum \varepsilon_i c_i w_i \))

(ii) \[\nabla_w w^T A w = A w + A^T w (= 2A w \text{ for symmetric } A) \]

\[L(w) = (w^T X^T - y^T)(Xw - y) \]

\[= w^T X^T X w - 2y^T X w + y^T y \]

Set \(\nabla_w L = 2X^T X w - 2X^T y = 0 \)

\((X^T X)w = X^T y \)

\[w = (X^T X)^{-1} X^T y \]
Solution to Linear Regression

\[L(w) = \sum_{i=1}^{m} (x_i^T w - y_i)^2 = (Xw - y)^T(Xw - y) \]

\[w = (X^T X)^{-1} X^T y \]

What if we had one-hot encoding for days?

- 7 binary features, exactly one of them is 1
- \(x_1 = 1, x_2 = \text{dist}, x_3 = \text{mon?}, x_4 = \text{tue?}, \ldots, x_9 = \text{sun?} \)

\(\alpha_3 + \alpha_4 + \alpha_5 + \ldots + \alpha_9 = 1 = \alpha_1 \)

- Linear dependence
- This means: \(\text{rank}(X) < n-1 \)
- \(X^T X \) is singular

One solution: DROP one feature, say \text{SUNDAY}. We will see other options next time
Linear Regression as Solving Noisy Linear Systems

Without noise: \(Xw = y \)

Linear regression finds \(\hat{y} \) that makes system \(Xw = \hat{y} \) feasible

And \(\hat{y} \) is closest to \(y \) in Euclidean distance
Other Loss Functions

\[L(w) = \sum_{i=1}^{m} |x_i^T w - y_i| \]

\[\leftarrow \text{Least squares fit is bad with outliers} \]
\[\text{Using sum of dist, instead of squared dist, less susceptible} \]

\[\text{No closed form solution} \]
\[\text{We will see how to solve using linear programming} \]
Loss Functions

- Consider $\ell : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ satisfying
 1. $\ell(0) = 0$
 2. ℓ is non-decreasing

- $L(w) = \sum_{i=1}^{m} \ell(|x_i^T \cdot w - y_i|)$

\[
\begin{align*}
\ell(z) &= |z|^2 \\
\ell(z) &= |z|^4 \\
\ell(z) &= |z|^{10} \\
\ell(z) &= |z| \\
\ell(z) &= \sqrt{|z|} \\
\ell(z) &= |z|^{0.01}
\end{align*}
\]
Optimization with different loss functions

\[L(w) = \sum |\hat{y}_i - y_i|^2 \]

\[L(w) = \sum |\hat{y}_i - y_i| \]

\[L(w) = \sum \sqrt{|\hat{y}_i - y_i|} \]

\[L(w) = \sum |\hat{y}_i - y_i|^{0.1} \]
Probabilistic Modelling

- Linear Model: \(y = x^T w^* + \text{noise} \) (for some \(w^* \))
- \(\mathbb{E}[y \mid x, w^*] = x^T w^* \)
- Data \(\langle (x_i, y_i) \rangle_{i=1}^m \)
- Unbiased estimator \(\hat{w} = (X^T X)^{-1} X^T y \)