Machine learning - HT 2016 2. Linear Regression

Varun Kanade

University of Oxford January 22, 2016

Outline

Supervised Learning Setting

- Data consists of input- output pairs
- Inputs (also covariates, independent variables, predictors, features)
- Output (also variates, dependent variable, targets, labels)

Goals

- Understand the supervised learning setting
- Understand linear regression (aka least squares)
- Derivation of the least squares estimate

Why study linear regression?

- "Least squares" is at least 200 years old (Legendre, Gauss)
- Francis Galton: Regression to mediocrity (1886)
- Often real processes can be approximated by linear models
- More complicated models require understanding linear regression
- Closed form analytic solutions can be obtained
- Many key notions of machine learning can be introduced

A toy example

Want to predict commute time into city centre

What variables would be useful?

- Distance to city centre
- Day of the week

Data

dist (km)	day	commute time (min)
2.7	fri	25
4.1	mon	33
1.0	sun	15
5.2	tue	45
2.8	sat	22

Linear Models

Suppose the input is a vector $\mathbf{x} \in \mathbb{R}^n$ and the output is $y \in \mathbb{R}$.

We have data $\langle \mathbf{x}_i, y_i
angle_{i=1}^m$

Notation: dimension n, size of dataset m, column vectors

Linear model:

 $y = w_0 + x_1 w_1 + \dots + x_n w_n + noise$

Linear Models

Linear model:

$$y = w_0 + x_1 w_1 + \dots + x_n w_n + noise$$

Input encoding: mon-sun has to be converted to a number

- monday: 0, tuesday: 1, ..., sunday: 6 (This is a bad encoding
 0 if weekend, 1 if weekday
 Use 7 binary features
 (instead)

Assume $x_1 = 1$ for all data. So model can be succinctly represented as

$$y = \mathbf{x} \cdot \mathbf{w} + \text{noise} = \hat{y} + \text{noise}$$

$$\bar{\mathbf{x}} \in \mathbb{R}^{n}, \quad \bar{\mathbf{w}} \in \mathbb{R}^{n}, \quad \bar{\mathbf{x}} \cdot \bar{\mathbf{w}} = \sum_{i=1}^{n} \mathbf{x}_{i} \cdot \mathbf{w}_{i}$$

Learning Linear Models

Data: $\langle (\mathbf{x}_i, y_i) \rangle_{i=1}^m$

Model parameter \mathbf{w}

Training phase: (learning/estimation of w) $\langle (x_i, y_i,) \rangle_{i=1}^{n}$ $ALGORITHM \longrightarrow W$ (estimate)

Testing phase: (predict $\hat{y}_{m+1} = \mathbf{x}_{m+1} \cdot \mathbf{w}$)

$$\hat{y}(x) = w_0 + xw_1$$

$$L(w) = L(w_0, w_1) = \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{m} (w_0 + x_i w_1 - y_i)^2$$

$$\frac{1}{2m} \frac{\partial L}{\partial w_0} = \prod_{m} \sum_{i=1}^{\infty} (\omega_0 + \omega_1 a_{i} - y_i) = 0$$

$$i \cdot e. \quad \omega_0 + \omega_1 \left(\prod_{m} \sum_{i=1}^{\infty} a_{i} \right) = \prod_{m} \sum_{i=1}^{\infty} y_i \cdot (1) \quad \text{NORMAL}$$

$$\text{EQUATIONS}$$

$$\frac{1}{2m} \frac{\partial L}{\partial w_1} = \prod_{m} \sum_{i=0}^{\infty} (\omega_0 + w_1 a_{i} - y_i) a_{i} = 0$$

$$i \cdot e. \quad w_0 \left(\prod_{m} \sum_{i=1}^{\infty} a_{i} \right) + w_1 \left(\prod_{m} \sum_{i=1}^{\infty} a_{i} \right) = \prod_{m} \sum_{i=1}^{\infty} a_{i} y_i \cdot (2)$$

$$\text{Solving} \quad \text{for} \quad w_1 : \prod_{m} \sum_{i=1}^{\infty} a_{i} y_i - \left(\prod_{m} \sum_{i=1}^{\infty} a_{i} \right) \left(\prod_{m} \sum_{i=1}^{\infty} a_{i} \right)$$

 $\frac{1}{m} \sum_{i=1}^{n} n_i^2 - \left(\prod_{m=1}^{n} n_i^2 \right)^2$

Linear Regression: General Case

Recall that the linear model is

$$\hat{y}_i = \sum_{j=1}^n x_{ij} w_j$$

where we assume that $x_{i1} = 1$ for all \mathbf{x}_i . So w_1 is the bias or offset term.

Expressing everything in matrix notation

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$$

Here we have $\hat{\mathbf{y}} \in \mathbb{R}^{m imes 1}$, $\mathbf{X} \in \mathbb{R}^{m imes n}$ and $\mathbf{w} \in \mathbb{R}^{n imes 1}$

$$\begin{bmatrix} \hat{\mathbf{y}}_{m\times 1} & \mathbf{X}_{m\times n} & \mathbf{w}_{n\times 1} & \mathbf{X}_{m\times n} & \mathbf{w}_{n\times 1} \\ \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_m \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_m^T \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ x_{21} & \cdots & x_{2n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}$$

Back to toy example

dist (km)	weekday?	commute time (min)
2.7	1 (fri)	25
4.1	1 (mon)	33
1.0	0 (sun)	15
5.2	1 (tue)	45
2.8	0 (sat)	22

We have m = 5, n = 3 and so we get

$$\mathbf{y} = \begin{bmatrix} 25\\33\\15\\45\\22 \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} 1 & 2.7 & 1\\1 & 4.1 & 1\\1 & 1.0 & 0\\1 & 5.2 & 1\\1 & 2.8 & 0 \end{bmatrix}, \ \mathbf{w} = \begin{bmatrix} w_1\\w_2\\w_3 \end{bmatrix}$$

Suppose we get $\mathbf{w} = [6, 6.5, 2]^T$. Then our predictions would be

$$\hat{\mathbf{y}} = \begin{bmatrix} 25.55\\ 34.65\\ 12.5\\ 41.8\\ 24.2 \end{bmatrix}$$

Linear Prediction

Suppose someone lives 4.8km from city centre, how long would they take to get in on a Wednesday?

We can write $\mathbf{x}_{new} = [1, 4.8, 1]^T$ and then compute

$$\hat{y}_{\mathsf{new}} = \begin{bmatrix} 1 & 4.8 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 6.5 \\ 2 \end{bmatrix} = 39.2 \text{ minutes}$$

Interpreting regression coefficients

Using regression coefficients to explain i not straightforward when there are arrociations among variables

Minimizing the Squared Error

$$L(\mathbf{w}) = \sum_{i=1}^{m} (\mathbf{x}_i^T \mathbf{w} - y_i)^2 = (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$$

Finding Optimal Solutions using Calculus

$$L(\mathbf{w}) = \sum_{i=1}^{m} (\mathbf{x}_{i}^{T} \mathbf{w} - y_{i})^{2} = (\mathbf{X}\mathbf{w} - \mathbf{y})^{T} (\mathbf{X}\mathbf{w} - \mathbf{y})$$

$$X = \left(\begin{array}{c} \mathbf{x}_{i}^{T} \\ \mathbf{x}_{2}^{T} \\ \vdots \\ \mathbf{x}_{m}^{T} \end{array} \right) \left(\begin{array}{c} \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \vdots \\ \mathbf{w}_{n} \end{array} \right) - \left(\begin{array}{c} \mathbf{y}_{1} \\ \vdots \\ \mathbf{y}_{m} \end{array} \right) = \left(\begin{array}{c} \mathbf{x}_{1}^{T} \\ \mathbf{x}_{2}^{T} \\ \mathbf{w} - \mathbf{y}_{2} \\ \vdots \\ \mathbf{x}_{m}^{T} \\ \mathbf{w} - \mathbf{y}_{2} \end{array} \right)$$

$$Can \quad \text{vorte} \quad n \quad \text{equation}$$

$$Can \quad \text{vorte} \quad n \quad \text{equation}$$

$$\frac{\partial L}{\partial w_{1}} = \cdots = 0 \qquad \text{Instead } L \in ARN$$

$$MATRIX \quad \text{DIFFERENTIATION}$$

$$\frac{\partial L}{\partial w_{n}} = \cdots = 0$$

Differentiating Matrix Expressions

$$L(\mathbf{w}) = \sum_{i=1}^{m} (\mathbf{x}_{i}^{T}\mathbf{w} - y_{i})^{2} = (\mathbf{X}\mathbf{w} - \mathbf{y})^{T}(\mathbf{X}\mathbf{w} - \mathbf{y})$$
Rules
(i) $\nabla_{\mathbf{w}}\mathbf{c}^{T}\mathbf{w} = \mathbf{c}$ (Linear Form: $\sum_{i} c_{i} \cdot \mathbf{w}_{i}$)
(ii) $\nabla_{\mathbf{w}}\mathbf{w}^{T}\mathbf{A}\mathbf{w} = \mathbf{A}\mathbf{w} + \mathbf{A}^{T}\mathbf{w} (= 2\mathbf{A}\mathbf{w} \text{ for symmetric } \mathbf{A})$

$$L(\mathbf{w}) = (\mathbf{w}^{T}\mathbf{X}^{T} - \mathbf{y}^{T})(\mathbf{X}\mathbf{w} - \mathbf{y})$$

$$= \mathbf{w}^{T}\mathbf{X}^{T}\mathbf{x}\mathbf{w} - 2\mathbf{y}^{T}\mathbf{X}\mathbf{w} + \mathbf{y}^{T}\mathbf{y}$$
Set $\nabla_{\mathbf{w}} = 2\mathbf{X}^{T}\mathbf{X}\mathbf{w} - 2\mathbf{y}^{T}\mathbf{X}\mathbf{w} + \mathbf{y}^{T}\mathbf{y}$
 $(\mathbf{x}^{T}\mathbf{x})\mathbf{w} = \mathbf{x}^{T}\mathbf{y}$

$$\mathbf{w} = (\mathbf{x}^{T}\mathbf{x})(\mathbf{x}^{T}\mathbf{y})$$

Solution to Linear Regression

$$L(\mathbf{w}) = \sum_{i=1}^{m} (\mathbf{x}_i^T \mathbf{w} - y_i)^2 = (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$$
$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

What if we had one-hot encoding for days?

- ▶ 7 binary features, exactly one of them is 1
- $x_1 = 1, x_2 = \text{dist}, x_3 = \text{mon}?, x_4 = \text{tue}?, \dots, x_9 = \text{sun}?$

Linear Regression as Solving Noisy Linear Systems

Without noise: $\mathbf{X}\mathbf{w} = \mathbf{y}$

Linear regression finds $\hat{\mathbf{y}}$ that makes system $\mathbf{X}\mathbf{w}=\hat{\mathbf{y}}$ feasible

And $\hat{\mathbf{y}}$ is closest to \mathbf{y} in Euclidean distance

Other Loss Functions

$$L(\mathbf{w}) = \sum_{i=1}^{m} |\mathbf{x}_i^T \mathbf{w} - y_i|$$

$$\leftarrow \text{Least Squares fit is bad with ordered of using sum of dist, instead of squared dist, less susceptible
$$\frac{No \text{ closed form solution}}{We \text{ will see how to solve using linear programming}}$$$$

Loss Functions

Consider ℓ : ℝ⁺ → ℝ⁺ satisfying
 1. ℓ(0) = 0
 2. ℓ is non-decreasing

$$\blacktriangleright L(\mathbf{w}) = \sum_{i=1}^{m} \ell(|\mathbf{x}_{i}^{T} \cdot \mathbf{w} - y_{i}|)$$

Optimization with different loss functions

Probabilistic Modelling

- Linear Model: $y = \mathbf{x}^T \mathbf{w}^* + \textit{noise}$ (for some \mathbf{w}^*)
- $\blacktriangleright \mathbb{E}[y \mid \mathbf{x}, \mathbf{w}^*] = \mathbf{x}^T \mathbf{w}^*$
- Data $\langle (\mathbf{x}_i, y_i)
 angle_{i=1}^m$
- Unbiased estimator $\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$