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Outline

Supervised Learning Setting

» Data consists of input- output pairs
» Inputs (also covariates, independent variables, predictors, features)

» Output (also variates, dependent variable, targets, labels)

Goals
» Understand the supervised learning setting

» Understand linear regression (aka least squares)

» Derivation of the least squares estimate



Why study linear regression?

» "“Least squares” is at least 200 years old (Legendre, Gauss)

» Francis Galton: Regression to mediocrity (1886)

» Often real processes can be approximated by linear models

» More complicated models require understanding linear regression

» Closed form analytic solutions can be obtained

» Many key notions of machine learning can be introduced



A toy example

Want to predict commute time into city centre

What variables would be useful?

» Distance to city centre
» Day of the week

Data
dist (km) day | commute time (min)
2.7 Fri 25
41 mon 33
1.0 sun 15
5.2 tue 45
2.8 sat 22




Linear Models

Suppose the input is a vector x € R™ and the outputis y € R.

We have data (x;,y;)i%,

Notation: dimension n, size of dataset m, column vectors

Linear model:
y =wo + x1w1 + - - - + Trw, + Noise



Linear Models

Linear model:
Yy = wo + T1wi + -+ - + Tpw, + NOISE

Input encoding: mon-sun has to be converted to a number
» monday: 0, tuesday: 1,...,sunday:6 ( Tlus is a \, o\o‘ M\wa(l‘n?

» 0if weekend, 1 if weekday Use F tha.ﬂ
l;n.s‘l'c‘\o‘.)

Assume x; = 1 for all data. So model can be succinctly represented as
y = X - w + noise = ¢ + noise
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Learning Linear Models

Data: <(xi7 yz));zl
Model parameter w

Training phase: (learning/estimation of w)
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Testing phase: (predict 11 = Xmy1 - W)
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Linear Regression: General Case

Recall that the linear model is

n
vi = E Tijw;
j=1

where we assume that z;; = 1 for all x;. So w; is the bias or offset term.

Expressing everything in matrix notation
y = Xw

Here we have §y € R™*!, X ¢ R™*" and w € R"*!
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Back to toy example
dist (km) weekday? | commute time (min)

2.7 1 (Fri) 25
4.1 1 (mon) 33
1.0 0 (sun) 15
5.2 1 (tue) 45
2.8 0 (sat) 22

We have m = 5, n = 3 and so we get

25 1 27 1

33 1 41 1 w1
y=[15], X=]|1 1.0 Of, w= |ws

45 1 52 1 w3

22 1 28 0

Suppose we get w = [6,6.5,2]7. Then our predictions would be

25.55
34.65
y=1125
41.8
24.2



Linear Prediction

Suppose someone lives 4.8km from city centre, how long would they take
to getin on a Wednesday?

We can write xnew = [1,4.8,1]7 and then compute

6
Jnew = [1 4.8 1] [6.5] = 39.2 minutes
2

Interpreting regression coefficients
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Minimizing the Squared Error

Liw) =" (x{w—y)’ = Xw—y) (Xw-y)

Wank & Bind
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Finding Optimal Solutions using Calculus

L(w) =37, (5w —3i)* = (Xw —y)" (Xw —y)
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Differentiating Matrix Expressions

L(w) = ZZ1(X@'TW - yi)2 = (Xw — y)T(Xw -y)
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Solution to Linear Regression
L(w) = 327, (xf w —4:)? = (Xw — y)" (Xw —y)
w=(XTX)"'X"y

What if we had one-hot encoding for days?

» 7 binary features, exactly one of them is 1
> 1 = 1, 2o =dist, z3 = mon?, z4 =tue?,..., zo =sun?
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Linear Regression as Solving Noisy Linear Systems

Without noise: Xw =y
Linear regression finds y that makes system Xw = y feasible

And y is closest to y in Euclidean distance



Other Loss Functions

L(w) = |xiw —yi
1=1
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Loss Functions

» Consider ¢ : RT™ — R™ satisfying

1. 6(0) =0 > L(W):;E(IX?W—yil)

2. £ is non-decreasing

U(z) = |2|* U(z) = |zl* U(z) = |2|"
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Optimization with different loss functions

L(w) =19 — yil? L(w) =319 — il

L(w) =2 V/19: — il L(w) =Y | — yi| ™
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Probabilistic Modelling

» Linear Model: y = xTw™ + noise (for some w*)
» Ely | x,w']=x"w"

» Data ((x;,¥i))iz1

» Unbiased estimator w = (XTX)"1X”y
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