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Outline

Probabilistic Framework
» Formulate linear regression in the language of probability
» Introduce the maximum likelihood estimate

» Relation to least squares estimate

Basics of Probability
» Univariate and multivariate normal distribution
» Laplace distribution

» Likelihood, Entropy and its relation to learning



Univariate Gaussian (Normal) Distribution

The univariate normal distribution is defined by the following density

function
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Here 1 is the mean and o2 is the variance.



Sampling from a Gaussian distribution

Sampling from X ~ N (p, 0%)

By settingY = (0,1)
Cumulative distribution function

JZ

v = [



Covariance and Correlation

For random variable X and Y the covariance measures how the random
variable change jointly.

cov(X,Y) =E[(X —E[X])(Y —E[Y])]

Covariance depends on the scale of the random variable. The (Pearson)
correlation coefficient normalizes the covariance to give a value between

—land +1.
cov(X,Y)
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where 0% = E[(X — E[X])?] and 0% = E[(Y — E[Y])?].



Multivariate Gaussian Distribution

Suppose x is a n-dimensional random vector. The covariance matrix consists
of all pariwise covariances.

var(X1) cov(X1,X2) -+ cov(X1,X,)
cov(Xa, X1) var(X2) s cov(Xa, X))

cov(x) =E [(x—]E[x])(x—]E[x])T] = . : . :
cov(X.n,Xl) COV(X.TL,XZ) Var(X;an)

If p = E[x] and ¥ = cov[x], the multivariate normal is defined by the density

N(p,X) = W eXp <—%(X - H)Tz_l(x - N))




Bivariate Gaussian Distribution

Suppose X1 ~ N (u1,01) and Xo ~ N (2, 03)

What is the joint probability distribution p(z1, z2)?



Suppose you are given three independent samples:
r1 = 1, T2 = 2.7, r3 = 3.

You know that the data were generated from N'(0,1) or N'(4, 1).

Let @ represent the parameters of the distribution. Then the probability of
observing data with parameter 6 is called the likelihood:

p(z1, 2,23 | 0) = p(x1 | @)p(z2 | O)p(3 | 0)

We have to chose between 8 = 0 and 8 = 4. Which one?

Maximum Likelihood Estimation (MLE): Pick 6 that maximizes the
likelihood.



Linear Regression

Recall our linear regression model
T .
Yy =X W -+ nhoise

Model y (conditioned on x) as a random variable. Given x and the model
parameter w:
Ely | x,w] =x"w

We can be more specific in choosing our model for 3. Let us assume that
given x, w, y is Gaussian with mean x”w and variance o2.

y~Nx"w,o?) =x"w+ N(0,0°)



Likelihood of Linear Regression

Suppose we observe data ((x;,v:))i~;. What is the likelihood of observing
the data for model parameters w, o?



Likelihood of Linear Regression

Suppose we observe data ((x;,v:))i~;. What is the likelihood of observing

the data for model parameters w, o?

m
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Recall that y; ~ xI'w 4+ N (0,02). So
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Want to find parameters w and o that maximize the likelihood



Likelihood of Linear Regression
It is simpler to look at the log-likelihood. Taking logs
LL(y1, -, Ym | X1, ..y X, W, 0) = _m log(2no?) — L i(xrw —y;)°
) yYm ’ s Amy Wy 2 202 e i
m 2 1 T
LL(y | X, w,0) = — T log(270?) — 2 (Xw = )" (Xw — )

How to find w that maximizes the likelihood?



Maximum Likelihood and Least Squares

Let us in fact look at negative log-likelihood (which is more like loss)

1
NLL(y | X, w,0) = 5 (Xw — )" (Xw —y) + 7 log(2m0)

And recall the squared loss objective

L(w) = (Xw —y)" (Xw —y)

We can also find the MLE for o. As exercise show that the MLE of ¢ is

1
oL = E(XWML -y (Xwm — y)



Making Prediction

Given training data D = ((x;, y:))i~; we can use MLE estimators to make
predictions on new points and also give confidence intervals.

Ynew | Xnew, D ~ N(XE;WWML7 O'BQAL)



Outliers and Laplace Distribution

With outliers least squares (and hence MLE with Gaussian model) can be
quite bad.

Instead, we can model the noise (or uncertainty) in y as a Laplace

distribution .
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Lookahead: Binary Classification

Bernoulli random variable X takes value in {0, 1}. We parametrize using
6 € [0,1].

p(1]6) =0

p(016)=1-46

More succinctly, we can write
p(z|0)=07(1—0)""°

For classification, we will design models with parameter w that given input
x produce avalue in f(x; w) € [0, 1]. Then, we can model the (binary) class
labels as:

y ~ Bernoulli( f(x; w))



Entropy

In information theory, entropy H is a measure of uncertainty associated
with a random variable.
Zp ) log(p

In the case of bernoulli variables (with parameter 9) we get:

H(X)= —0log(f) — (1 —0)log(l —0)




Maximum Likelihood and KL-Divergence

Suppose we get data zy, . ..z, from some unknown distribution q.

Attempt to find parameters 6 for a family of distributions that best
explains the data

§ = argmax zi |0
g il:[lp( 10)
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Kullback-Leibler Divergence

KL-Divergence is “like" a distance between distributions

L(qllp) = Zlog

KL(qllq) =0

KL(q|lp) > 0 for all distributions p



Next Time

» Going beyond linear regression - basis expansion

v

Regularization: Ridge Regression, LASSO

v

Model Complexity

v

Validation Techniques



