Machine learning - HT 2016
3. Maximum Likelihood

Varun Kanade

University of Oxford
January 27, 2016



Outline

Probabilistic Framework
» Formulate linear regression in the language of probability
» Introduce the maximum likelihood estimate

» Relation to least squares estimate

Basics of Probability
» Univariate and multivariate normal distribution
» Laplace distribution

» Likelihood, Entropy and its relation to learning



Univariate Gaussian (Normal) Distribution

The univariate normal distribution is defined by the following density

function
1 Nt =3 2 2
x) = e 20 X NN , 0
p(x) o> (1, 07)

Here 1 is the mean and o2 is the variance.
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Sampling from a Gaussian distribution

Sampling from X ~ N (p, 0%)

By setting Y = £=£, sample from Y ~ A/(0, 1)
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Cumulative distribution function

2

@(m):\/%/jx}e T dt

\
\! \l\\
[N

j . N
'Ii I /N UV\A{([0117)
@(M

W~ N0, 1)



Covariance and Correlation

For random variable X and Y the covariance measures how the random
variable change jointly.

cov(X,_Y) =E[(X — E[X])(Y — E[Y])]
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Covariance depends on the scale of the random variable. The (Pearson)

correlation coefficient normalizes the covariance to give a value between
—1land +1.

cov(X,Y)

ox0y

corr(X,Y) =

where 0% = E[(X — E[X])?] and 03 = E[(Y — E[Y])?].



Multivariate Gaussian Distribution

Suppose x is a n-dimensional random vector. The covariance matrix consists
of all pariwise covariances.

var(X1) cov(X1,X2) -+ cov(Xi,Xn)
cov(Xa, X1) var(Xs) s cov(Xa, X))

cov(x) = E [(x—E[x])(x—E[x])T] = . : _ :
cov(X.n,Xl) COV(X.n,Xz) var(X;l,Xn)

If u = E[x] and = = cov[x], the multivariate normal is defined by the density
1 1 _
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Bivariate Gaussian Distribution

Suppose X1 ~ N (u1,01) and Xo ~ N (2, 03)
What is the joint probability distribution p(z1, z2)?
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Suppose you are given three independent samples:
r1 = 1, T2 = 2.7, r3 = 3.

You know that the data were generated from N (0,1) or N'(4, 1).

Let @ represent the parameters of the distribution. Then the probability of
observing data with parameter 6 is called the likelihood:

p(x1, 22,23 | 0) = p(z1 | O)p(x2 | O)p(xs | O)
We have to chose between 8 = 0 and 8 = 4. Which one?
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Maximum Likelihood Estimation (MLE): Pick 6 that maximizes the
likelihood.



Linear Regression

Recall our linear regression model
T .
Yy = X W+ noise

Model y (conditioned on x) as a random variable. Given x and the model
parameter w:
Ely |x,w] =x"w

We can be more specific in choosing our model for 3. Let us assume that
given x, w, y is Gaussian with mean x”w and variance o2.

y~Nx"w,0?) =x"w+ N(0,07)



Likelihood of Linear Regression

Suppose we observe data ((x;,v:))i~:. What is the likelihood of observing
the data for model parameters w, o?
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Likelihood of Linear Regression

Suppose we observe data ((x;,v:))i~;. What is the likelihood of observing

the data for model parameters w, o?

m

p(yh'"aym ‘X1,...,Xm7W,O') = IIp(y2 |Xi,W,0')

=1

Recall that y; ~ xI'w 4+ N (0,02). So

3

T 2
1 _ (y;—x; W)
e 202

p(yh'"aym‘xlv"'ax’mvw’a):
1=1

|

To2

m/2
1 e 7o Tii (i) w)?
2mwo?

Il
/N

Want to find parameters w and o that maximize the likelihood



Likelihood of Linear Regression

It is simpler to look at the log-likelihood. Taking logs
1 m
LL(y1,-- -, Ym | X1y oo, Xm, W, 0) = —Elog 2770 ~ 553 z:: xFw— yl

__m 2y 1 _ _
LL(y | X, w,0) = =2 log(2m0%) — 5= (Xw — )" (Xw — y)
How to find w that maximizes the likelihood?
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Maximum Likelihood and Least Squares

Let us in fact look at negative log-likelihood (which is more like loss)

1
NLL(y | X, w,0) = 5= (Xw — )" (Xw — y) + = log(2r0”)

And recall the squared loss objective

L(w) = (Xw —y)" (Xw —y)

We can also find the MLE for ¢. As exercise show that the MLE of ¢ is

1
oL = E(XWML -y (Xwm — y)



Making Prediction

Given training data D = ((x;, y:))i~; we can use MLE estimators to make
predictions on new points and also give confidence intervals.

Ynew | Xnew, D~ N(XnTewWML: O'EAL)




Outliers and Laplace Distribution

With outliers least squares (and hence MLE with Gaussian model) can be

quite bad.
Instead, we can model the noise (or uncertainty) in y as a Laplace
distribution
(y|x,w,b) = Lo Cly=xTw]
ply [ x,w, % Y b
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Lookahead: Binary Classification

Bernoulli random variable X takes value in {0, 1}. We parametrize using
6 € [0,1].

p(1]6) =0

p(016)=1-46

More succinctly, we can write
p(x|0) =07(1—0)""°

For classification, we will design models with parameter w that given input
x produce avalue in f(x; w) € [0, 1]. Then, we can model the (binary) class
labels as:

y ~ Bernoulli(f(x; w))



Entropy

In information theory, entropy H is a measure of uncertainty associated
with a random variable.
Zp ) log(p

In the case of bernoulli variables (with parameter 9) we get:

H(X)= —0log(f) — (1 —0)log(l —0)




Maximum Likelihood and KL-Divergence

Suppose we get data z1, . ..z, from some unknown distribution q.

Attempt to find parameters 6 for a family of distributions that best
explains the data

§ = argmax zi |0
g [ 10)

=1
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— angmax — 3" log(p(z |0)) — == > log(a(a)
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Kullback-Leibler Divergence

KL-Divergence is “like" a distance between distributions

L(qllp) = Zlog

KL(qllg) =0

KL(q||p) > 0 for all distributions p



