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Outline

Probabilistic Framework

� Formulate linear regression in the language of probability

� Introduce the maximum likelihood estimate

� Relation to least squares estimate

Basics of Probability

� Univariate and multivariate normal distribution

� Laplace distribution

� Likelihood, Entropy and its relation to learning
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Univariate Gaussian (Normal) Distribution

The univariate normal distribution is defined by the following density
function

p(x) =
1√
2πσ

e
− (x−µ)2

2σ2 X ∼ N (µ,σ2)

Here µ is the mean and σ2 is the variance.
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Sampling from a Gaussian distribution

Sampling fromX ∼ N (µ,σ2)

By setting Y = X−µ
σ

, sample from Y ∼ N (0, 1)

Cumulative distribution function

Φ(x) =
1√
2π

� x

−∞
e−

t2

2 dt
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Covariance and Correlation

For random variableX and Y the covariance measures how the random
variable change jointly.

cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

Covariance depends on the scale of the random variable. The (Pearson)
correlation coefficient normalizes the covariance to give a value between
−1 and+1.

corr(X,Y ) =
cov(X,Y )

σXσY
,

where σ2
X = E[(X − E[X])2] and σ2

Y = E[(Y − E[Y ])2].
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Multivariate Gaussian Distribution

Suppose x is a n-dimensional random vector. The covariance matrix consists
of all pariwise covariances.

cov(x) = E
�
(x − E[x])(x − E[x])T

�
=




var(X1) cov(X1, X2) · · · cov(X1, Xn)
cov(X2, X1) var(X2) · · · cov(X2, Xn)

.

.

.
.
.
.

. . .
.
.
.

cov(Xn, X1) cov(Xn, X2) · · · var(Xn, Xn)


 .

Ifµ = E[x] andΣ = cov[x], the multivariate normal is defined by the density

N (µ,Σ) =
1

(2π)n/2|Σ|1/2 exp

�
−1

2
(x− µ)TΣ−1(x− µ)

�
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Bivariate Gaussian Distribution

SupposeX1 ∼ N (µ1,σ
2
1) andX2 ∼ N (µ2,σ

2
2)

What is the joint probability distribution p(x1, x2)?
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Suppose you are given three independent samples:
x1 = 1, x2 = 2.7, x3 = 3.

You know that the data were generated fromN (0, 1) orN (4, 1).

Let θ represent the parameters of the distribution. Then the probability of
observing data with parameter θ is called the likelihood:

p(x1, x2, x3 | θ) = p(x1 | θ)p(x2 | θ)p(x3 | θ)

We have to chose between θ = 0 and θ = 4. Which one?

Maximum Likelihood Estimation (MLE): Pick θ that maximizes the
likelihood.
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Linear Regression

Recall our linear regression model

y = xTw + noise

Model y (conditioned on x) as a random variable. Given x and the model
parameterw:

E[y | x,w] = xTw

We can be more specific in choosing our model for y. Let us assume that
given x,w, y is Gaussian with mean xTw and variance σ2.

y ∼ N (xTw,σ2) = xTw +N (0,σ2)
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Likelihood of Linear Regression

Suppose we observe data �(xi, yi)�mi=1. What is the likelihood of observing
the data for model parametersw, σ?
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Likelihood of Linear Regression

Suppose we observe data �(xi, yi)�mi=1. What is the likelihood of observing
the data for model parametersw, σ?

p (y1, . . . , ym | x1, . . . ,xm,w,σ) =

m�

i=1

p (yi | xi,w,σ)

Recall that yi ∼ xT
i w +N (0,σ2). So

p (y1, . . . , ym | x1, . . . ,xm,w,σ) =

m�

i=1

1√
2πσ2

e
− (yi−xT

i w)2

2σ2

=

�
1

2πσ2

�m/2

e
− 1

2σ2

�m
i=1(yi−xT

i w)2

Want to find parametersw and σ that maximize the likelihood
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Likelihood of Linear Regression

It is simpler to look at the log-likelihood. Taking logs

LL(y1, . . . , ym | x1, . . . ,xm,w,σ) = −m

2
log(2πσ2)− 1

2σ2

m�

i=1

(xT
i w − yi)

2

LL(y |X,w,σ) = −m

2
log(2πσ2)− 1

2σ2
(Xw − y)T (Xw − y)

How to findw that maximizes the likelihood?
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Maximum Likelihood and Least Squares

Let us in fact look at negative log-likelihood (which is more like loss)

NLL(y |X,w,σ) =
1

2σ2
(Xw − y)T (Xw − y) +

m

2
log(2πσ2)

And recall the squared loss objective

L(w) = (Xw − y)T (Xw − y)

We can also find the MLE for σ. As exercise show that the MLE of σ is

σ2
ML =

1

m
(XwML − y)T (XwML − y)

12



Making Prediction

Given training dataD = �(xi, yi)�mi=1 we can use MLE estimators to make
predictions on new points and also give confidence intervals.

ynew | xnew,D ∼ N (xT
newwML,σ

2
ML)
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Outliers and Laplace Distribution

With outliers least squares (and hence MLE with Gaussian model) can be
quite bad.

Instead, we can model the noise (or uncertainty) in y as a Laplace
distribution

p(y | x,w, b) =
1

2b
exp

�
− |y − xTw|

b

�
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Lookahead: Binary Classification

Bernoulli random variableX takes value in {0, 1}. We parametrize using
θ ∈ [0, 1].

p(1 | θ) = θ

p(0 | θ) = 1− θ

More succinctly, we can write

p(x | θ) = θx(1− θ)1−x

For classification, we will design models with parameterw that given input
x produce a value in f(x;w) ∈ [0, 1]. Then, we can model the (binary) class
labels as:

y ∼ Bernoulli(f(x;w))
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Entropy

In information theory, entropyH is a measure of uncertainty associated
with a random variable.

H(X) = −
�

x

p(x) log(p(x))

In the case of bernoulli variables (with parameter θ) we get:

H(X) = −θ log(θ)− (1− θ) log(1− θ)

��� ��� ��� ��� ��� ���
���

���

���

���

���

���
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Maximum Likelihood and KL-Divergence

Suppose we get data x1, . . . xm from some unknown distribution q.

Attempt to find parameters θ for a family of distributions that best
explains the data

θ̂ = argmax
θ

m�

i=1

p(xi | θ)

= argmax
θ

m�

i=1

log(p(xi | θ))

= argmax
θ

1

m

m�

i=1

log(p(xi | θ))− 1

m

m�

i=1

log(q(xi))

= argmin
θ

1

m

m�

i=1

log

�
q(xi)

p(xi | θ)

�

→ argmin
θ

�
log

�
q(x)

p(x)

�
q(x)dx = KL(q�p)
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Kullback-Leibler Divergence

KL-Divergence is ‘‘like’’ a distance between distributions

KL(q�p) =
�

i

log
q(xi)

p(xi)
q(xi)dx

KL(q�q) = 0

KL(q�p) ≥ 0 for all distributions p
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