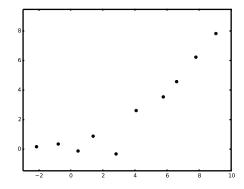
Machine learning - HT 2016 4. Basis Expansion, Regularization, Validation

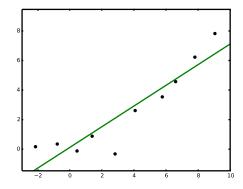
Varun Kanade

University of Oxford Feburary 03, 2016

Outline

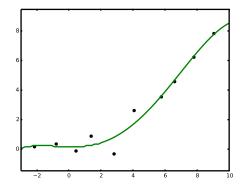
- Introduce basis function to go beyond linear regression
- Understanding the tradeoff between bias and variance
- Overfitting: What happens when we make models too complex
- Regularization as a means to control model complexity
- Cross-validation to perform model selection





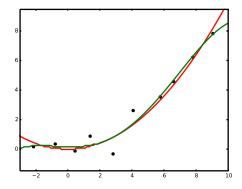
$$oldsymbol{\phi}(x) = [1, x, x^2, x^3, x^4]$$

 $w_1 + w_2 x + w_3 x^2 + w_4 x_3 + w_4 x^5 = oldsymbol{\phi}(x) \cdot [w_1, w_2, w_3, w_4, w_5]$

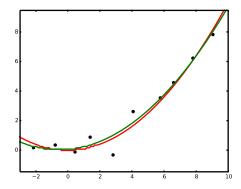


$$oldsymbol{\phi}(x) = [1, x, x^2, x^3, x^4]$$

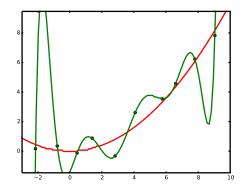
 $w_1 + w_2 x + w_3 x^2 + w_4 x_3 + w_4 x^5 = oldsymbol{\phi}(x) \cdot [w_1, w_2, w_3, w_4, w_5]$



 $\boldsymbol{\phi}(x) = [1, x, x^2]$

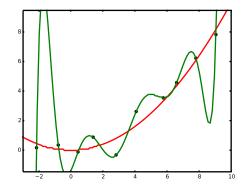


$$\phi(x) = [1, x, x^2, x^3, \dots, x^9]$$



$$\phi(x) = [1, x, x^2, x^3, \dots, x^d]$$

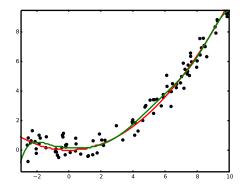
How can we avoid overfitting?



$$\phi(x) = [1, x, x^2, x^3, \dots, x^d]$$

How can we avoid overfitting?

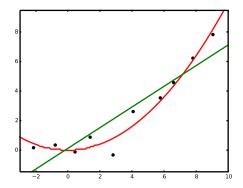
Does more data help?



$$\phi(x) = [1, x, x^2, x^3, \dots, x^d]$$

How can we avoid overfitting?

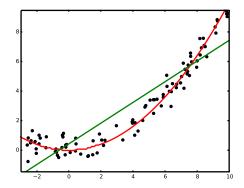
Does more data help?



$$\phi(x) = [1, x, x^2, x^3, \dots, x^d]$$

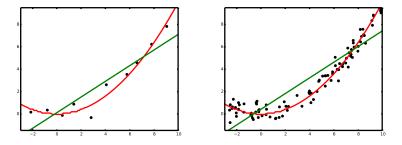
How can we avoid overfitting?

Does more data help?



Bias Variance Tradeoff

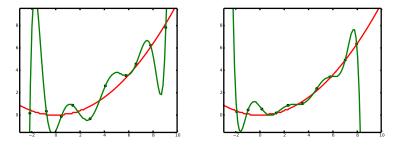
For linear model, more data would make little difference



- Bias results from model being simpler than the "truth"
- High bias results in underfitting

Bias Variance Tradeoff

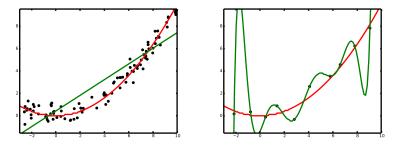
What happens when we fit model on different (randomly drawn) training datasets?



- Variance arises when the (complex) model is sensitive to fluctuations in training dataset
- Variance results in overfitting

Bias Variance Tradeoff

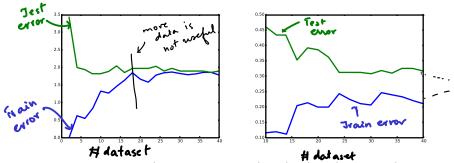
- When does more data help?
- Error = Bias² + Variance + Noise (<u>Exercise</u> for linear regression)



- For more complex models, difficult to visually overfitting and underfitting
- Keep aside some points as "test set"

Learning Curves

- Suppose we have a training set and test set
- Train on increasing sizes of the training set, and plot the errors

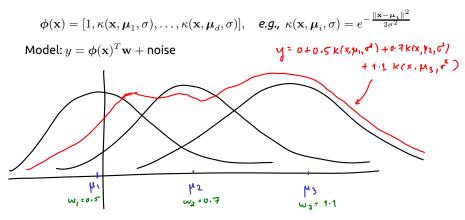


Once training and test error approach each other, then more data won't help!

Basis Expansion Using Kernels

We can use kernels as features, e.g., radial basis functions (RBFs)

Feature expansion:



Basis Expansion Using Kernels

As in the case of polynomials, the width σ can cause overfitting or underfitting

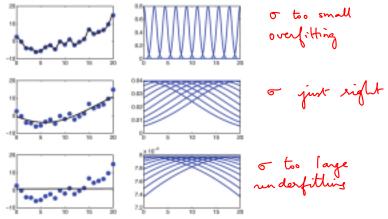


Image Source: K. Murphy (2012)

Polynomial Basis Expansion in Higher Dimensions

We are basically fitting linear models (at the cost of increasing dimensions)

 $y = \boldsymbol{\phi}(\mathbf{x}) + \mathsf{noise}$

Linear Model: $\phi(\mathbf{x}) = [1, x_1, x_2]$

Quadratic Model: $\phi(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2, x_1x_2]$

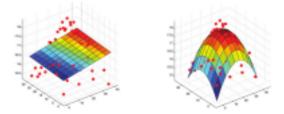


Image Source: K. Murphy (2012)

How many dimensions do you get for degree d polynomials over nvariables? Arows as $n^{d} \rightarrow if n = 1000$, d = 20, This is 10^{60} !

Overfitting!

In high dimensions, we can have many many parameters!

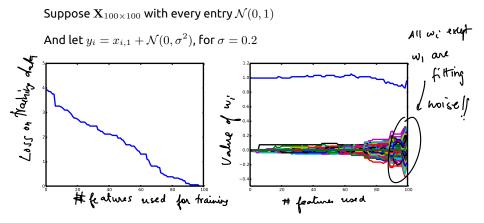
With 100 variables and degree 10 we have $\sim 10^{20}$ parameters!

Enrico Fermi to Freeman Dyson

"I remember my friend Johnny von Neumann used to say, with four parameters I can fit an elephant, and with five I can make him wiggle his trunk." [video]

How do we prevent overfitting?

How does overfitting occur?



Ridge Regression

Say our data is $\langle (\mathbf{x}_i, y_i) \rangle_{i=1}^m$, where $\mathbf{x} \in \mathbb{R}^N$ where N is really really large!

We used the squared loss

$$L(\mathbf{w}) = (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$$

and obtained the estimate

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$
Suppose we want w to be "small" (weight decay)
$$L(\mathbf{w}) = (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^T \mathbf{w} - \frac{\lambda w_1^2}{Don't}$$
We will not regularize the "bias" (or constant) term
$$\mathbf{w} = (\mathbf{x} - \mathbf{w})^T (\mathbf{x} - \mathbf{w})^T \mathbf{w} - \frac{\lambda w_1^2}{Don't}$$

<u>Exercise</u>: If all x_i (except x_1) have mean 0 and y has mean 0, $w_1 = 0$

Deriving Estimate for Ridge Regression

$$L(\mathbf{w}) = (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^T \mathbf{w}$$

$$\nabla_{\mathbf{w}} L = 2 \mathbf{x}^T \mathbf{x} \mathbf{w} - 2 \mathbf{x}^T \mathbf{y} + 2\lambda \mathbf{w} = 0$$

$$\Rightarrow \qquad \mathbf{w} = (\underline{\mathbf{x}}^T \mathbf{x} + \lambda \mathbf{I})^T \mathbf{x}^T \mathbf{y}$$
Positive semi-definite
$$\therefore \mathbf{z}^T \mathbf{x}^T \mathbf{x} \mathbf{z} + \lambda \mathbf{z}^T \mathbf{y} \Rightarrow \mathbf{0} + \lambda \neq 0$$

$$\Rightarrow \mathbf{z}_T^{T}(\mathbf{x}, \mathbf{z}) + \lambda \mathbf{z}^T \mathbf{y} \Rightarrow \mathbf{0} + \lambda \neq 0$$

$$\Rightarrow \mathbf{z}_T^{T}(\mathbf{x}, \mathbf{z}) + \lambda \mathbf{z}^T \mathbf{y} = 0$$

$$\Rightarrow \mathbf{x}^T \mathbf{x} + \lambda \mathbf{z} \text{ is non-singular } 1$$

Ridge Regression

Objective/Loss: $L(\mathbf{w}) = (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^T \mathbf{w}$ Estimate: $\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$

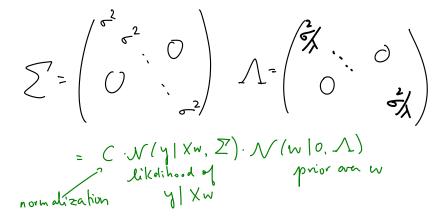
Estimate depends on the scaling of the inputs

Common practice: Normalise all input dimensions

Ridge Regression and MAP Estimation

Objective/Loss:
$$L(\mathbf{w}) = (\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^T \mathbf{w}$$

 $\exp\left(\frac{-1}{2\sigma^2}L(\mathbf{w})\right) = \exp\left(-\frac{1}{2}(\mathbf{y} - \mathbf{X}\mathbf{w})^T \Sigma^{-1}(\mathbf{y} - \mathbf{X}\mathbf{w})\right) \cdot \exp\left(-\frac{1}{2}\mathbf{w}^T \Lambda^{-1} \mathbf{w}\right)$



Bayesian View of Machine Learning

General Formulation Linear Regression Prior $p(\mathbf{w})$ on \mathbf{w} $p(\mathbf{w}) = \mathcal{N}(\mathbf{w} \mid \mathbf{0}, \tau^2 \mathbf{I}_n)$ $p(y \mid \mathbf{x}, \mathbf{w}) = \mathcal{N}(y \mid \mathbf{x}^T \mathbf{w}, \sigma^2)$ Model $p(y \mid \mathbf{x}, \mathbf{w})$ Bayes Rule: Compute posterior given data $\mathcal{D} = \langle (\mathbf{x}_i, y_i) \rangle_{i=1}^m$ P(AIB) = P(B|A)P(A) $p(\mathbf{w} \mid \mathcal{D}) \propto p(\mathcal{D} \mid \mathbf{w}) \cdot p(\mathbf{w})$ P(B) likelihood given pri model parameters he rormalization Mode of poctation distribution. p (2)= (p(2)~)p(w) can be difficult Maximum A Postaioni (MAP) estimate to comput Ridge Regression = MAP estimation with yourssiampriors. How ever, not needed for

Bayesian View of Regression

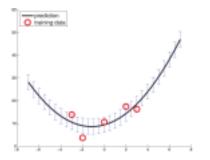
Making a prediction on a new point \mathbf{x}_{new} $D \cdot (X, \overline{Y})$ $p(y \mid \mathcal{D}, \mathbf{x}_{new}) = \int p(y \mid \mathbf{w}, \mathbf{x}_{new}) p(\mathbf{w} \mid \mathcal{D}) d\mathbf{w}$ For linear regression $p(y/\omega, x_{new}) = \int \mathcal{N}(y|x_{new}^{T}w, \sigma^{2}) \cdot \mathcal{N}(w|w_{map}, (x_{X+\lambda T}^{T}))$ $= \mathcal{N}\left(\mathcal{J} \mid X_{nev}^{\mathsf{T}} \mathcal{W}_{map}, \overline{\mathcal{T}}\left(\mathcal{I} + X_{nev}^{\mathsf{T}} \mid X^{\mathsf{T}} \times + \frac{\sigma^{2}}{7^{2}} \overline{L} \right)^{\mathsf{T}} x_{new} \right)$ (For details see Murphy Sec. 7.6.1 67.6.2)

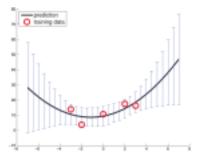
Prediction MAP vs Fully Bayesian MAP Approach

$$y_{\text{new}} \sim \mathcal{N}(\mathbf{x}_{\text{new}}^T \mathbf{w}_{\text{map}}, \sigma^2)$$

Bayesian Approach

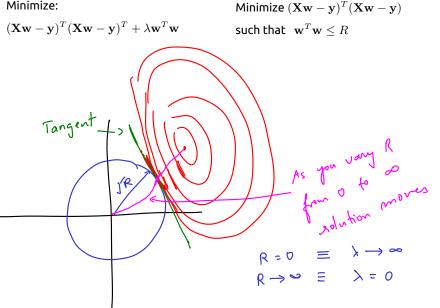
$$\begin{split} y_{\text{new}} &\sim \mathcal{N}(\mathbf{x}_{\text{new}}^T \mathbf{w}_{\text{map}}, \sigma_X^2) \\ \sigma_X^2 &= \sigma^2 (1 \! + \! \mathbf{x}_{\text{new}}^T (\mathbf{X}^T \mathbf{X} \! + \! \frac{\sigma^2}{\tau^2} \mathbf{I})^{-1} \mathbf{x}_{\text{new}}) \end{split}$$



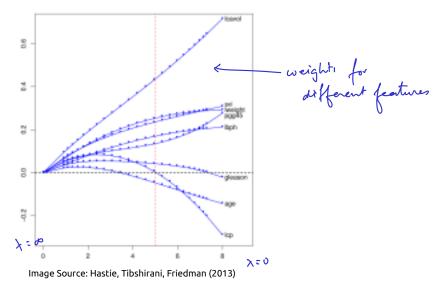


Ridge Regression

Minimize:



Ridge Regression



Lasso Regression

Minimize: Minimize $(\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$ $(\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})^T + \lambda \sum_{i=1}^N |w_i|$ such that $\sum_{i=1}^{N} |w_i| \leq R$ No closed form indution. Needs convex optimization methods colutions are likely to ly sparse be genuinely sparse if using alarization

Lasso Regression

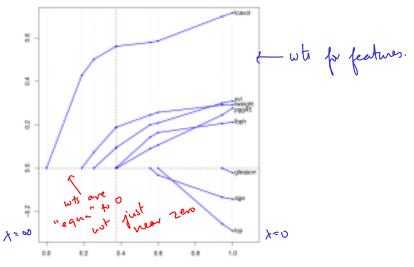
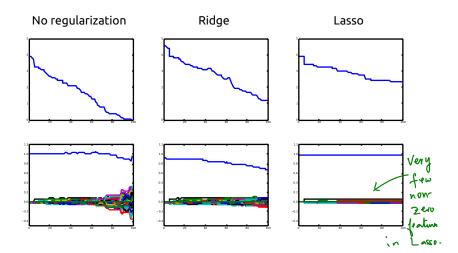


Image Source: Hastie, Tibshirani, Friedman (2013)

Regularization: Ridge or Lasso



Before we were just trying to find $\ensuremath{\mathbf{w}}$

Now, we have to worry about how to choose λ for ridge or Lasso

If we use kernels, we also have to pick the width σ

If we use higher degree polynomials, we have to pick d

Cross Validation

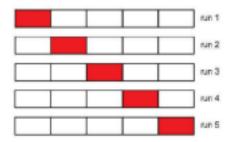
- Keep a part of data as "validation" or "test" set
- Look for error on "training" and "validation" sets

λ	Train Error(%)	Test Error(%)
0.01	0	89
0.1	0	43
1	2	12
10	10 25	B least early
100	25	27 000031 0000
		on test
		dataset
		At you have small dataset
		you may want to average
		braining a test error.
		If you have small dataset you may want to average training a test error.

k-Fold Cross Validation

What do we do when data is scarce?

- Divide data into k parts
- Use k-1 parts for training and 1 part as validation
- When k = m (the number of datapoints), we get LOOCV (Leave one out cross validation)



Suppose you do all the right things

- Train on the training set
- Choose hyperparameters using proper validation
- Test on the test set, and your error is high!

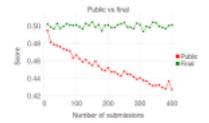
What would you do?

Winning Kaggle without reading the data!

Suppose the task is to predict \boldsymbol{m} binary labels

Algorithm (Wacky Boosting):

- 1. Choose $\mathbf{y}^1, \dots, \mathbf{y}^k \in \{0, 1\}^m$ uniformly
- 2. Set $I = \{i \mid accuracy(\mathbf{y}^i) > 51\%\}$
- 3. Output $\hat{y}_j = \text{majority}\{y_j^i \mid i \in I\}$



Source: blog.mrtz.org