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Outline

� Introduce basis function to go beyond linear regression

� Understanding the tradeoff between bias and variance

� Overfitting: What happens when we make models too complex

� Regularization as a means to control model complexity

� Cross-validation to perform model selection
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Basis Expansion
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Basis Expansion

φ(x) = [1, x, x2, x3, x4]

w1 + w2x+ w3x
2 + w4x3 + w4x

5 = φ(x) · [w1, w2, w3, w4, w5]
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Basis Expansion

φ(x) = [1, x, x2]
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Basis Expansion

φ(x) = [1, x, x2, x3, . . . , x9]
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Basis Expansion

φ(x) = [1, x, x2, x3, . . . , xd]

How can we avoid overfitting?
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Basis Expansion

φ(x) = [1, x, x2, x3, . . . , xd]

How can we avoid overfitting?

Does more data help?
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Basis Expansion

φ(x) = [1, x, x2, x3, . . . , xd]

How can we avoid overfitting?

Does more data help?

−2 0 2 4 6 8 10

0

2

4

6

8

3



Bias Variance Tradeoff

� For linear model, more data would make little difference
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� Bias results from model being simpler than the ‘‘truth’’

� High bias results in underfitting
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Bias Variance Tradeoff

� What happens when we fit model on different (randomly drawn)
training datasets?
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� Variance arises when the (complex) model is sensitive to fluctuations in
training dataset

� Variance results in overfitting
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Bias Variance Tradeoff

� When does more data help?

� Error = Bias2 + Variance + Noise (Exercise for linear regression)
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� For more complex models, difficult to visually overfitting and
underfitting

� Keep aside some points as ‘‘test set’’
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Learning Curves

� Suppose we have a training set and test set

� Train on increasing sizes of the training set, and plot the errors
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� Once training and test error approach each other, then more data
won’t help!
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Basis Expansion Using Kernels

We can use kernels as features, e.g., radial basis functions (RBFs)

Feature expansion:

φ(x) = [1,κ(x,µ1,σ), . . . ,κ(x,µd,σ)], e.g., κ(x,µi,σ) = e
− �x−µi�2

2σ2

Model: y = φ(x)Tw + noise
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Basis Expansion Using Kernels

As in the case of polynomials, the width σ can cause overfitting or
underfitting

Image Source: K. Murphy (2012)
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Polynomial Basis Expansion in Higher Dimensions

We are basically fitting linear models (at the cost of increasing dimensions)

y = φ(x) + noise

Linear Model: φ(x) = [1, x1, x2]

Quadratic Model: φ(x) = [1, x1, x2, x
2
1, x

2
2, x1x2]

Image Source: K. Murphy (2012)

How many dimensions do you get for degree d polynomials over n
variables?
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Overfitting!

In high dimensions, we can have many many parameters!

With 100 variables and degree 10we have∼ 1020 parameters!

Enrico Fermi to Freeman Dyson

‘‘I remember my friend Johnny von Neumann used to say, with four
parameters I can fit an elephant, and with five I can make him wiggle his
trunk.’’ [video]

How do we prevent overfitting?
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How does overfitting occur?

SupposeX100×100 with every entryN (0, 1)

And let yi = xi,1 +N (0,σ2), for σ = 0.2
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Ridge Regression

Say our data is �(xi, yi)�mi=1, where x ∈ RN whereN is really really large!

We used the squared loss

L(w) = (Xw − y)T (Xw − y)

and obtained the estimate

w = (XTX)−1XTy

Suppose we wantw to be ‘‘small’’ ( weight decay)

L(w) = (Xw − y)T (Xw − y) + λwTw − λw2
1

We will not regularize the ‘‘bias’’ (or constant) term

Exercise: If all xi (except x1) have mean 0 and y has mean 0, w1 = 0
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Deriving Estimate for Ridge Regression

L(w) = (Xw − y)T (Xw − y) + λwTw
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Ridge Regression

Objective/Loss: L(w) = (Xw − y)T (Xw − y) + λwTw

Estimate: ŵ = (XTX+ λI)−1XTy

Estimate depends on the scaling of the inputs

Common practice: Normalise all input dimensions
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Ridge Regression and MAP Estimation

Objective/Loss: L(w) = (Xw − y)T (Xw − y) + λwTw

exp
� −1
2σ2L(w)

�
= exp

�
− 1

2
(y −Xw)TΣ−1(y −Xw)

�
· exp

�
− 1

2
wTΛ−1w

�
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Bayesian View of Machine Learning

General Formulation

Prior p(w) onw

Model p(y | x,w)

Linear Regression

p(w) = N (w | 0, τ2In)

p(y | x,w) = N (y | xTw,σ2)

Compute posterior given dataD = �(xi, yi)�mi=1

p(w | D) ∝
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Bayesian View of Regression

Making a prediction on a new point xnew

p(y | D,xnew) =

�

w

p(y |w,xnew)p(w | D)dw
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Prediction MAP vs Fully Bayesian

MAP Approach

ynew ∼ N (xT
newwmap,σ

2)

Bayesian Approach

ynew ∼ N (xT
newwmap,σ

2
X)

σ2
X = σ2(1+xT

new(X
TX+ σ2

τ2 I)
−1xnew)
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Ridge Regression

Minimize:

(Xw − y)T (Xw − y)T + λwTw

Minimize (Xw − y)T (Xw − y)

such that wTw ≤ R
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Ridge Regression

Image Source: Hastie, Tibshirani, Friedman (2013)
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Lasso Regression

Minimize:

(Xw − y)T (Xw − y)T + λ
�N

i=1 |wi|
Minimize (Xw − y)T (Xw − y)

such that
�N

i=1 |wi| ≤ R
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Lasso Regression

Image Source: Hastie, Tibshirani, Friedman (2013)
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Regularization: Ridge or Lasso

No regularization Ridge Lasso
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Choosing Parameters

Before we were just trying to findw

Now, we have to worry about how to choose λ for ridge or Lasso

If we use kernels, we also have to pick the width σ

If we use higher degree polynomials, we have to pick d
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Cross Validation

� Keep a part of data as ‘‘validation’’ or ‘‘test’’ set

� Look for error on ‘‘training’’ and ‘‘validation’’ sets

λ Train Error(%) Test Error(%)
0.01 0 89
0.1 0 43
1 2 12
10 10 8
100 25 27

26



k-Fold Cross Validation

What do we do when data is scarce?

� Divide data into k parts

� Use k − 1 parts for training and 1 part as validation

� When k = m (the number of datapoints), we get LOOCV (Leave one
out cross validation)
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Overfitting on the Validation Set

Suppose you do all the right things

� Train on the training set

� Choose hyperparameters using proper validation

� Test on the test set, and your error is high!

What would you do?
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Winning Kaggle without reading the data!

Suppose the task is to predictm
binary labels

Algorithm (Wacky Boosting):

1. Choose y1, . . . ,yk ∈ {0, 1}m
uniformly

2. Set I = {i | accuracy(yi) > 51%}
3. Output ŷj = majority{yi

j | i ∈ I}

Source: blog.mrtz.org
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