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Cross-validation to perform model selection



Basis Expansion
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Basis Expansion
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Basis Expansion

d(x) = [1,z,2% 2%, ..., 27
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Bias Variance Tradeoff

» For linear model, more data would make little difference
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» Bias results from model being simpler than the “truth”
» High bias results in underfitting




Bias Variance Tradeoff

» What happens when we fit model on different (randomly drawn)
training datasets?

™~ »

=2 0 2 T 6 B 0 =2 0 2z q 6 B 0

» Variance arises when the (complex) model is sensitive to fluctuations in
training dataset

» Variance results in overfitting



Bias Variance Tradeoff

» When does more data help?
» Error = Bias? + Variance + Noise (Exercise for linear regression)

= T T 3

» For more complex models, difficult to visually overfitting and
underfitting

» Keep aside some points as “test set”



Learning Curves

» Suppose we have a training set and test set
» Train on increasing sizes of the training set, and plot the errors
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» Once training and test error approach each other, then more data
won’t help!



Basis Expansion Using Kernels

We can use kernels as features, e.g., radial basis functions (RBFs)
Feature expansion:
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Basis Expansion Using Kernels

As in the case of polynomials, the width o can cause overfitting or
underfitting

Image Source: K. Murphy (2012)



Polynomial Basis Expansion in Higher Dimensions

We are basically fitting linear models (at the cost of increasing dimensions)
y = ¢(x) + noise
Linear Model: ¢(x) = [1, z1, z2]

Quadratic Model: ¢(x) = [1, 1, z2, 7, 23, T122]

Image Source: K. Murphy (2012)

How many dimensions do you get for degree d polynomials over n
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Overfitting!

In high dimensions, we can have many many parameters!

With 100 variables and degree 10 we have ~ 10%° parameters!
Enrico Fermi to Freeman Dyson

“I remember my friend Johnny von Neumann used to say, with four

parameters I can fit an elephant, and with five I can make him wiggle his
trunk.” [video]

How do we prevent overfitting?



How does overfitting occur?

Suppose Xioox 100 With every entry A (0, 1)

And let y; = ;1 + N(0,0?), foro = 0.2
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Ridge Regression

Say our data is ((x;,:))™ 1, where x € RY where N is really really large!
We used the squared loss
Liw)=Xw—y) (Xw—y)

and obtained the estimate
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Suppose we want w to be “small” (weight decay)
L(w) = (Xw — Y)T(XW -y)+ Awlw — dw?
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Exercise: If all z; (except z1) have mean 0 and y has mean 0, w; = 0



Deriving Estimate for Ridge Regression
Liw)=Xw—y) (Xw—y) + \w'w
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Ridge Regression

Objective/Loss: L(w) = (Xw —y)T (Xw —y) + Aw”w
Estimate: w = (X"X + AI) 7' X"y
Estimate depends on the scaling of the inputs

Common practice: Normalise all input dimensions
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Ridge Regression and MAP Estimation
Objective/Loss: L(w) = (Xw —y)T (Xw —y) + Aw”w

exp (375 L(w)) = exp (—%(y - Xw) 'S (y - XW)) - exp (—%WTA_IW)
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Bayesian View of Machine Learning

General Formulation Linear Regression
Prior p(w) on w p(w) = N(w|0,7°L,)
Modelp(y | x, w) Py | x,w) =N(y|x"w,0%)
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Bayesian View of Regression
Making a prediction on a new point xpew D- | X y,J

Py | D, Xnew) = / Py | W, Xnew)p(w | D)dw
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Prediction MAP vs Fully Bayesian
MAP Approach

Ynew ™~ N(Xgewwmap, 0'2)
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Ridge Regression
Minimize:

Xw —y)T(Xw —y)T + awl'w
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Ridge Regression
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Image Source: Hastie, Tibshirani, Friedman (2013)
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Lasso Regression
Minimize:

(Xw —y)"(Xw —y)" + AL, Jwi

Minimize (Xw — y)7(Xw —y)
suchthat SN |wi| <R
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Lasso Regression
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Image Source: Hastie, Tibshirani, Friedman (2013)
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Regularization: Ridge or Lasso (Gyowwf]'f {QMW\ Sl\‘o{l lZ)

No regularization

Ridge

Lasso
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Choosing Parameters

Before we were just trying to find w
Now, we have to worry about how to choose ) for ridge or Lasso
If we use kernels, we also have to pick the width o

If we use higher degree polynomials, we have to pick d
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Cross Validation

» Keep a part of data as “validation” or “test” set
» Look for error on “training” and “validation” sets

A Train Error(%) | Test Error(%)
0.01 0 89
0.1 0 43
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k-Fold Cross Validation

What do we do when data is scarce?
» Divide data into k parts
» Use k — 1 parts for training and 1 part as validation

» When k£ = m (the number of datapoints), we get LOOCV (Leave one
out cross validation)
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Overfitting on the Validation Set

Suppose you do all the right things

» Train on the training set
» Choose hyperparameters using proper validation

» Test on the test set, and your error is high!

What would you do?
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Winning Kaggle without reading the data!

Suppose the task is to predict m
binary labels
Algorithm (Wacky Boosting):

1. Choosey',...,y* € {0,1}™
uniformly

2. Set T = {i | accuracy(y’) > 51%}
3. Output §; = majority{y} | i € I}

Source: blog.mrtz.org

29



