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Outline

Most machine learning problems can (ultimately) be cast as optimization
problems.

� Linear Programming

� Basics: Gradients, Hessians

� Gradient Descent

� Stochastic Gradient Descent

� Constrained Optimization

Although most software torch, octave, scikit-learn, etc., will have
optimization methods implemented, you will need to understand the basics
of optimization to implement them effectively.
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Linear Programming

Looking for solutions x ∈ Rn to the following optimization problem

minimize cTx

subject to aT
i x ≤ bi, i = 1, . . . ,m

� No analytic solution

� Efficient algorithms exist
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Linear Model with Absolute Loss

Suppose we have data �(xi, yi)�mi=1

L(w) =
�m

i=1 |xT
i w − yi|

Tricks to cast problems as linear programs

Absolute Value Constraints

Constraint

|x| ≤ a

Add two constraints

x ≤ a

−x ≤ a

Max Constraints

Constraint

max(x1, x2) ≤ a

Add two constraints

x1 ≤ a

x2 ≤ a
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Linear Model with Absolute Loss

Suppose we have data �(xi, yi)�mi=1

L(w) =
�m

i=1 |xT
i w − yi|
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Linear Model with Lasso Regularization

L(w) =
�m

i=1(Xw − y)T (Xw − y) + λ
�n

i=1 |wi|

� Quadratic loss---can’t frame as linear programming

� Lasso regularization does not allow for closed form solutions

Need to use general optimization methods
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Calculus Background: Gradients

z = f(w1, w2) =
w2

1
a2 +

w2
2

b2
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Calculus Background: Hessians

z = f(w1, w2) =
w2

1
a2 +

w2
2

b2

∇f =




∂f
∂w1

∂f
∂w2


 =




2w1
a2

2w2
b2
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Calculus Background: Chain Rule

z = f(w1(θ1, θ2), w2(θ1, θ2))
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Gradient Vector

Supposew ∈ Rn and f : Rn → R.

∇wf(w) =




∂f
∂w1
∂f
∂w2

...
∂f
∂wn




Hessian matrix of f contains all second order partial derivatives.

H = ∇2
wf(w) =




∂2f

∂w2
1

∂2f
∂w1∂w2

· · · ∂2f
∂w1∂wn

∂2f
∂w2∂w1

∂2f

∂w2
2

· · · ∂2f
∂w2∂wn

...
...

. . .
...

∂2f
∂wn∂w1

∂2f
∂wn∂w2

· · · ∂2f
∂w2

n
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Gradient Descent Algorithm

Gradient descent is one of the simplest, but very general algorithm for
optimization

It is an iterative algorithm, producing a newwt+1 at each iteration as

wt+1 = wt − ηtgt = wt − ηt∇f(wt)

We will denote the gradients by gt

ηt > 0 is the learning rate or step size
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Gradient Descent for Least Squares Regression

When would you want to use gradient descent to solve least squares?

L(w) = (Xw − y)T (Xw − y) =

m�

i=1

(xT
i w − yi)

2

10



Choosing a step size

� If step size is too large, algorithm may never converge

� If step size is too small, convergence may be very slow

� May want a time-varying step size
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Second Order Methods
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� Gradient descent uses only the
first derivative

� Local linear approximation
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� Newton’s method uses second
derivatives

� Degree 2 Taylor approximation
around current point
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Newton’s Method in High Dimensions

The updates depend on the gradient and the Hessian

wt+1 = wt −H−1
t gt

Approximate f aroundwt using second order Taylor approximation

fquad(w) = f(wt) + gT
t (w −wt) +

1

2
(w −wt)

THt(w −wt)

Wemove directly to the stationary point of fquad
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Newton’s Method gives Stationary Points
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Hessian will tell you which kind of stationary point is found

Computationally expensive--computing Hessian and inverting it at each
iteration
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Sub-gradient Descent

Focus on the case when f is convex,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for all x, y, α ∈ [0, 1]
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f(x) ≥ f(x0) + g(x− x0) where g is a sub-derivative

f(x) ≥ f(x0) + g(x− x0) where g is a sub-gradient

Any g satisfying the above inequality will be called a sub-gradient at x0
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Sub-gradient Descent

f(w) = |w1|+ |w2|+ |w3|+ |w4| forw ∈ R4

What is a sub-gradient at the point (2,−3, 0, 1)?
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Learning as Optimization

Offline Learning

We have dataD = �(xi, yi)�mi=1. We are minimizing a loss,

L(w) = L(w,D) =
1

m

m�

i=1

�(w;xi, yi) +R(w)

Thus the gradient of the loss function is:

∇wL =
1

m

m�

i=1

∇w�(w;xi, yi) +∇wR(w)

For ridge linear regression we have

L(w) = L(w,D) =
1

m

m�

i=1

(xT
i w − yi)

2 + λwTw
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Stochastic Gradient Descent

For learning we take the gradient of the loss function

∇wL =
1

m

m�

i=1

∇w�(w;xi, yi) +R(w)

Suppose I pick a random point (xi, yi) and evaluate gi = ∇w�(w;xi, yi)

What is E[gi] ?
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Online Learning: Stochastic Gradient Descent
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Online Learning with mini-batches

Batch Learning

wt+1 = wt − η

m

m�

i=1

∇w�(w;xi, yi)− λ∇wR(w)

Online Learning

wt+1 = wt − η∇w�(w;xi, yi)− λ∇wR(w)

Minibatch Online Learning

wt+1 = wt − η

b

b�

i=1

∇w�(w;xi, yi)− λ∇wR(w)
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Momentum

Movement is in a direction that is a combination of previous move and the
gradient

wt+1 −wt = α(wt −wt−1) + (1− α)(−gt)
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Adagrad

Text Data

Among the potential sticking
points were Mr Cameron’s proposals
on changing the EU rules to make
it easier for member states to
band together to block EU laws -
and plans to protect non-eurozone
countries.

y x1 x2 x3 x4

1 1 0 0 1
-1 1 1 0 0
-1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
-1 1 1 1 0
1 1 1 0 0
1 1 1 0 1
1 1 1 0 0

Adagrad Update

wt+1,i ← wt,i − η��t
s=1 g

2
s,i

gt,i
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Constrained Convex Optimization

What if we want to look for a solution in a constrained set (not all of Rn)?

Minimize (Xw − y)T (Xw − y) in the setwTw < R2
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Summary

Convex Optimization

� Convex Optimization is (typically) efficient

� Try to cast learning problem as a convex optimization problem

� Books: Boyd and Vandenberghe, Nesterov’s Book

Non-Convex Optimization

� Encountered frequently in deep learning

� Stochastic Gradient Descent gives (local) minima

� Nonlinear Programming - Dimitri Bertsekas
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