Machine learning - HT 2016 5. Optimization

Varun Kanade

University of Oxford February 05, 2016

Outline

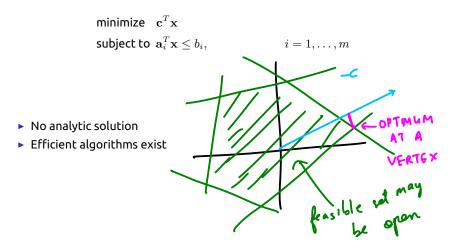
Most machine learning problems can (ultimately) be cast as optimization problems.

- Linear Programming
- Basics: Gradients, Hessians
- Gradient Descent
- Stochastic Gradient Descent
- Constrained Optimization

Although most software torch, octave, scikit-learn, *etc.*, will have optimization methods implemented, you will need to understand the basics of optimization to implement them effectively.

Linear Programming

Looking for solutions $\mathbf{x} \in \mathbb{R}^n$ to the following optimization problem



Linear Model with Absolute Loss

Suppose we have data $\langle (\mathbf{x}_i, y_i)
angle_{i=1}^m$

 $L(\mathbf{w}) = \sum_{i=1}^{m} |\mathbf{x}_i^T \mathbf{w} - y_i|$

Tricks to cast problems as linear programs

Absolute Value Constraints	Max Constraints
----------------------------	-----------------

Constraint

$$|x| \leq a$$

Constraint

 $\max(x_1, x_2) \le a$

Add two constraints

Add two constraints

$$x \le a$$
 $x_1 \le a$
 $-x \le a$ $x_2 \le a$

Linear Model with Absolute Loss

Suppose we have data $\langle (\mathbf{x}_i, y_i) \rangle_{i=1}^m$ $L(\mathbf{w}) = \sum_{i=1}^m |\mathbf{x}_i^T \mathbf{w} - y_i|$ Add ourilliary variables $\alpha_1, \ldots, \alpha_m$ minimise $\sum_{i=1}^{m} \alpha_i$

$$x_{i}^{T}w - y_{i} \leq \alpha_{i}^{T} \implies |x_{i}^{T}w - y_{i}| \leq \alpha$$

$$-x_{i}^{T}w + y_{i}^{T} \leq \alpha_{i}^{T} \qquad (if (\alpha_{i}^{*}, w^{*})) is ophimum solution)$$

$$it must be the case that
$$\alpha_{i}^{T} = |x_{i}^{T} \cdot w^{*} - y_{i}^{T}|$$$$

Linear Model with Lasso Regularization

$$L(\mathbf{w}) = \sum_{i=1}^{m} (\mathbf{X}\mathbf{w} - \mathbf{y})^{T} (\mathbf{X}\mathbf{w} - \mathbf{y}) + \lambda \sum_{i=1}^{n} |w_{i}|$$

- Quadratic loss---can't frame as linear programming
- Lasso regularization does not allow for closed form solutions

Need to use general optimization methods

Calculus Background: Gradients

$$z = f(w_1, w_2) = \frac{w_1^2}{a^2} + \frac{w_2^2}{b^2}$$

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial w_1} \\ \frac{\partial f}{\partial w_2} \end{pmatrix} = \begin{pmatrix} \frac{2 w_1}{a^2} \\ \frac{2 w_2}{b^2} \\ \frac{\partial f}{b^2} \end{pmatrix}$$

$$\frac{\partial f}{\partial w_1} = \begin{pmatrix} \lim_{k \to \infty} \frac{f(w_1 + \delta w_1, w_2) - f(w_1, w_2)}{\delta w_1} \\ \frac{\partial f}{\delta w_1} \end{pmatrix}$$
gradient
point in
the direction
of steepest increase.

Calculus Background: Hessians

$$z = f(w_1, w_2) = \frac{w_1^2}{a^2} + \frac{w_2^2}{b^2}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial w_1} \\ \frac{\partial f}{\partial w_2} \end{bmatrix} = \begin{bmatrix} \frac{2w_1}{a^2} \\ \frac{2w_2}{b^2} \end{bmatrix}$$

$$H = \begin{pmatrix} \frac{\partial^2 f}{\partial w_1^3} & \frac{\partial^2 f}{\partial w_1 \partial w_2} \\ \frac{\partial^2 f}{\partial w_2 \partial w_1} & \frac{\partial^2 f}{\partial w_2^3} \end{pmatrix} : \begin{pmatrix} \frac{a}{a^2} & 0 \\ a^2 & 0 \\ 0 & 2b^2 \end{pmatrix}$$

$$H = since f = since f$$

Calculus Background: Chain Rule

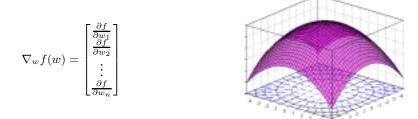
 $z = f(w_1(\theta_1, \theta_2), w_2(\theta_1, \theta_2))$

$$\frac{\partial f}{\partial \theta_{1}} = \frac{\partial f}{\partial w_{1}} \cdot \frac{\partial w_{1}}{\partial \theta_{1}} + \frac{\partial f}{\partial w_{2}} \cdot \frac{\partial w_{2}}{\partial \theta_{1}}$$

$$\frac{\partial f}{\partial \theta_{1}} = \frac{\partial f}{\partial w_{1}} \cdot \frac{\partial w_{1}}{\partial \theta_{1}} + \frac{\partial f}{\partial w_{2}} \cdot \frac{\partial w_{2}}{\partial \theta_{1}}$$
Use this a lot, when we do brack propagation
in NN.

Gradient Vector

Suppose $\mathbf{w} \in \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$.



Hessian matrix of f contains all second order partial derivatives.

$$\mathbf{H} = \nabla_{w}^{2} f(w) = \begin{bmatrix} \frac{\partial^{2} f}{\partial w_{1}^{2}} & \frac{\partial^{2} f}{\partial w_{1} \partial w_{2}} & \cdots & \frac{\partial^{2} f}{\partial w_{1} \partial w_{n}} \\ \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} & \frac{\partial^{2} f}{\partial w_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial w_{2} \partial w_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial w_{n} \partial w_{1}} & \frac{\partial^{2} f}{\partial w_{n} \partial w_{2}} & \cdots & \frac{\partial^{2} f}{\partial w_{n}^{2}} \end{bmatrix}$$

Gradient Descent Algorithm

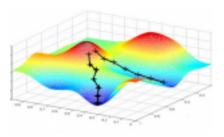
Gradient descent is one of the simplest, but very general algorithm for optimization

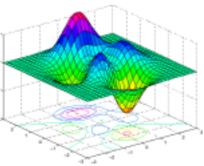
It is an iterative algorithm, producing a new \mathbf{w}_{t+1} at each iteration as

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \mathbf{g}_t = \mathbf{w}_t - \eta_t \nabla f(\mathbf{w}_t)$$

We will denote the gradients by \mathbf{g}_t

 $\eta_t > 0$ is the learning rate or step size



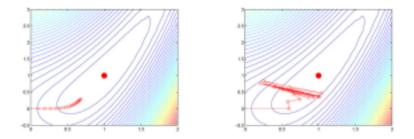


Gradient Descent for Least Squares Regression

When would you want to use gradient descent to solve least squares?

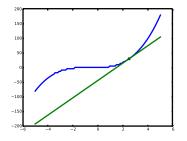
$$L(\mathbf{w}) = (\mathbf{X}\mathbf{w} - y)^T (\mathbf{X}\mathbf{w} - \mathbf{y}) = \sum_{i=1}^m (\mathbf{x}_i^T \mathbf{w} - y_i)^2$$

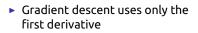
Choosing a step size



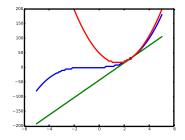
- If step size is too large, algorithm may never converge
- If step size is too small, convergence may be very slow
- May want a time-varying step size

Second Order Methods





Local linear approximation



- Newton's method uses second derivatives
- Degree 2 Taylor approximation around current point

Newton's Method in High Dimensions

The updates depend on the gradient and the Hessian

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{H}_t^{-1} \mathbf{g}_t$$

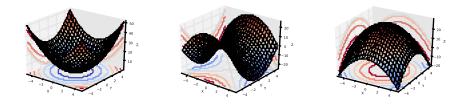
Approximate f around \mathbf{w}_t using second order Taylor approximation

$$f_{\text{quad}}(\mathbf{w}) = f(\mathbf{w}_t) + \mathbf{g}_t^T(\mathbf{w} - \mathbf{w}_t) + \frac{1}{2}(\mathbf{w} - \mathbf{w}_t)^T \mathbf{H}_t(\mathbf{w} - \mathbf{w}_t)$$

We move directly to the stationary point of $f_{
m quad}$

$$\overline{U}_{w} f_{qn-d} = g_{t} + H_{t}(w-w_{t})$$
setting $\nabla_{w} f_{qn-d} = 0$ to get w_{tn} we have
$$w_{t+1} = w_{t} - H_{t}^{-1}g_{t}.$$

Newton's Method gives Stationary Points



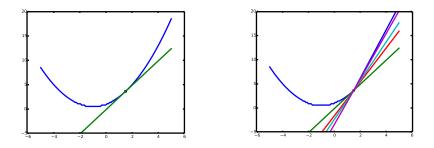
Hessian will tell you which kind of stationary point is found

Computationally expensive--computing Hessian and inverting it at each iteration

Sub-gradient Descent

Focus on the case when f is convex,

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) \qquad \text{for all } x, y, \alpha \in [0, 1]$$



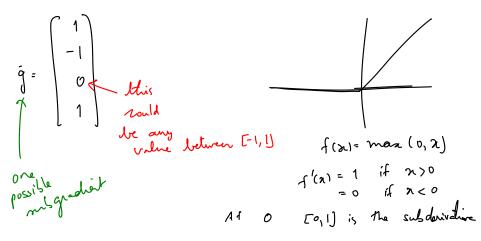
$$\begin{split} f(x) &\geq f(x_0) + g(x - x_0) \quad \text{where } g \text{ is a sub-derivative} \\ f(\mathbf{x}) &\geq f(\mathbf{x}_0) + \mathbf{g}(\mathbf{x} - \mathbf{x}_0) \quad \text{where } \mathbf{g} \text{ is a sub-gradient} \end{split}$$

Any ${f g}$ satisfying the above inequality will be called a sub-gradient at ${f x}_0$

Sub-gradient Descent

$$f(\mathbf{w}) = |w_1| + |w_2| + |w_3| + |w_4|$$
 for $\mathbf{w} \in \mathbb{R}^4$

What is a sub-gradient at the point (2, -3, 0, 1)?



Learning as Optimization

Offline Learning

We have data $\mathcal{D} = \langle (\mathbf{x}_i, y_i) \rangle_{i=1}^m$. We are minimizing a loss,

$$L(\mathbf{w}) = L(\mathbf{w}, \mathcal{D}) = \frac{1}{m} \sum_{i=1}^{m} \ell(\mathbf{w}; \mathbf{x}_i, y_i) + R(\mathbf{w})$$

Thus the gradient of the loss function is:

$$\nabla_{\mathbf{w}} L = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\mathbf{w}} \ell(\mathbf{w}; \mathbf{x}_i, y_i) + \nabla_{\mathbf{w}} R(\mathbf{w})$$

For ridge linear regression we have

$$L(\mathbf{w}) = L(\mathbf{w}, \mathcal{D}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_i^T \mathbf{w} - y_i)^2 + \lambda \mathbf{w}^T \mathbf{w}$$

Stochastic Gradient Descent

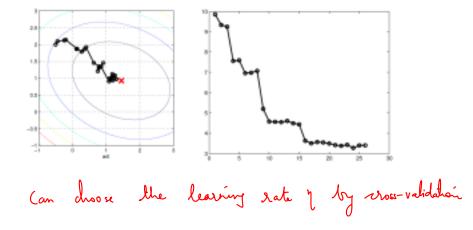
For learning we take the gradient of the loss function

$$\nabla_{\mathbf{w}} L = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\mathbf{w}} \ell(\mathbf{w}; \mathbf{x}_i, y_i) + R(\mathbf{w})$$

Suppose I pick a random point (x_i, y_i) and evaluate $g_i = \nabla_w \ell(w; x_i, y_i)$ What is $\mathbb{E}[g_i]$?

$$\mathbb{E}[\hat{g}_i] = \frac{1}{m} \sum_{i=1}^{m} \nabla_{w} \mathcal{L}(w; \mathbf{x}_i; \mathbf{y}_i)$$

Online Learning: Stochastic Gradient Descent



Online Learning with mini-batches

Batch Learning

$$w_{t+1} = w_t - \frac{\eta}{m} \sum_{i=1}^m \nabla_w \ell(\mathbf{w}; \mathbf{x}_i, y_i) - \lambda \nabla_w R(\mathbf{w})$$

Online Learning

$$w_{t+1} = w_t - \eta \nabla_w \ell(\mathbf{w}; \mathbf{x}_i, y_i) - \lambda \nabla_w R(\mathbf{w})$$

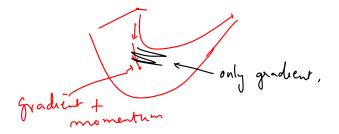
Minibatch Online Learning

$$w_{t+1} = w_t - \frac{\eta}{b} \sum_{i=1}^{b} \nabla_w \ell(\mathbf{w}; \mathbf{x}_i, y_i) - \lambda \nabla_w R(\mathbf{w})$$

Momentum

Movement is in a direction that is a combination of previous move and the gradient

$$\mathbf{w}_{t+1} - \mathbf{w}_t = \alpha(\mathbf{w}_t - \mathbf{w}_{t-1}) + (1 - \alpha)(-\mathbf{g}_t)$$



Adagrad

Text Data

Among the potential sticking points were Mr Cameron's proposals on changing the EU rules to make it easier for member states to band together to block EU laws and plans to protect non-eurozone countries.

Adagrad Update

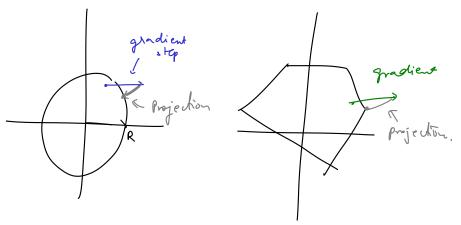
In case such as
$$w_{t+1,i} \leftarrow w_{t,i} - \frac{\eta}{\sqrt{\sum_{s=1}^{t} g_{s,i}^2}} g_t$$

text, vertoo
are typically sparse.
"Rare words" are most useful

Constrained Convex Optimization

What if we want to look for a solution in a constrained set (not all of \mathbb{R}^n)?

Minimize $(\mathbf{X}\mathbf{w} - \mathbf{y})^T (\mathbf{X}\mathbf{w} - \mathbf{y})$ in the set $\mathbf{w}^T \mathbf{w} < R^2$



Summary

Convex Optimization

- Convex Optimization is (typically) efficient
- Try to cast learning problem as a convex optimization problem
- Books: Boyd and Vandenberghe, Nesterov's Book

Non-Convex Optimization

- Encountered frequently in deep learning
- Stochastic Gradient Descent gives (local) minima
- Nonlinear Programming Dimitri Bertsekas