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Outline

Today we’ll discuss classification using logistic regression.

I Discriminative vs Generative Models

I Likelihood of Logistic Regression

I Using convex optimization to the obtain MLE

I Logistic Regression in torch
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Classification : Generative Models

How are the inputs, tail length and height,
distributed given the class?

Model Pr(x | y = zebra)

Model Pr(x | y = donkey)

Example: Model both distributions are
multivariate normal with same covariance
matrix but different mean
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Classification : Generative Models
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Discriminative Approach

Don’t try to model the inputs x at all

Model the output y given the input x and the parameters for the modelw

y ∼ p(x,w)

Pros and cons for both approaches (see Murphy Chapter 8.6)

Focus on discriminative classification
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Logistic Regression: Sigmoid Function

The sigmoid function, or σ, (a.k.a. logistic or logit) is defined as

σ(z) =
ez

ez + 1
=

1

1 + e−z
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Binary Classification: Logistic Regression

As in the case of linear regression, we model y given x ∈ Rn and
parametersw ∈ Rn

Linear model parametrized byw ∈ Rn composed with sigmoid filter

We have,
Pr(y = 1 | x,w) = σ(xTw)

For prediction:
ŷ = I(σ(xTw) ≥ 1
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Binary Classification : Logistic Regression
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Bernoulli Random Variables

Bernoulli random variableX takes value in {0, 1}. We parametrize using
θ ∈ [0, 1].

p(1 | θ) = θ

p(0 | θ) = 1− θ

More succinctly, we can write

p(x | θ) = θx(1− θ)1−x

Logistic Regression

y given x and parameterw is modelled as Bernoulli variable

y ∼ Bernoulli(σ(xTw))
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Likelihood of Logistic Regression

Given dataD = 〈(xi, yi)〉mi=1 we can compute the likelihood of observing y
under the logistic regression model

p(y |X,w) =

m∏
i=1

Bernoulli(yi | σ(xT
i w))

=

m∏
i=1

(
1

1 + e−xT
i w

)yi
(
1− 1

1 + e−xT
i w

)1−yi

Let’s look at the negative log likelihood for a single data point (xi, yi)

L(w;xi, yi) = − log(p(yi | σ(xT
i w)))

= − (yi log(πi) + (1− yi) log(1− πi))
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Gradient and Hessian of NLL

The negative log likelihood is given by

L(w) = NLL(y |X,w) = −
m∑
i=1

(yi log(πi) + (1− yi) log(1− πi))

The gradient and the Hessian (with respect tow) can be computed as:

g = ∇wL =

m∑
i=1

xi(πi − yi) = XT (π − y)

H = ∇2
wL =

m∑
i=1

πi(1− πi)x
ixT

i = XTdiag(πi(1− πi))X

Homework: Show thatH is positive definite.

NLL is convex and has a global minimum

10



Gradient and Hessian of NLL

The negative log likelihood is given by

L(w) = NLL(y |X,w) = −
m∑
i=1

(yi log(πi) + (1− yi) log(1− πi))

The gradient and the Hessian (with respect tow) can be computed as:

g = ∇wL =

m∑
i=1

xi(πi − yi) = XT (π − y)

H = ∇2
wL =

m∑
i=1

πi(1− πi)x
ixT

i = XTdiag(πi(1− πi))X

Homework: Show thatH is positive definite.

NLL is convex and has a global minimum

10



Gradient and Hessian of NLL

The negative log likelihood is given by

L(w) = NLL(y |X,w) = −
m∑
i=1

(yi log(πi) + (1− yi) log(1− πi))

The gradient and the Hessian (with respect tow) can be computed as:

g = ∇wL =

m∑
i=1

xi(πi − yi) = XT (π − y)

H = ∇2
wL =

m∑
i=1

πi(1− πi)x
ixT

i = XTdiag(πi(1− πi))X

Homework: Show thatH is positive definite.

NLL is convex and has a global minimum

10



Iteratively Reweighted Least Squares (IRLS)

Apply Newton’s method

gt = XT (πt − y) = −XT (y − πt)

Ht = XTStX

Newton’s update says:

wt+1 = wt −H−1
t gt

= wt + (XTStX)−1XT (y − πt)

= (XTStX)−1XT (StXwt + y − πt) = (XTStX)−1(XtStzt)

This is a least square solution for the system

m∑
i=1

St,i(x
T
i w − zt,i)2
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Multi-class, Softmax Formulation, Multinoulli1

Logistic Regression as a Neural Network

1Kevin Murphy’s usage
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Softmax in Torch

nn.SoftMax()
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Likelihood for multi-class

Classes: {1, . . . , C}

Indicator function:

Ic(y) =

{
1 if y = c

0 otherwise

The parametersW is now a n× C matrix

For a single data point (x, y) the likelihood is:

p(y | x,W) =

C∏
c=1

πIc(y)
c

And the negative log likelihood is

L(W;x,y) = −
C∑

c=1

Ic(y) log(πc)
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Multiclass Logistic Regression in Torch

example-logistic-regression.lua

require ’nn’; require ’optim’;

model = nn.Sequential()

ninputs = 10; noutputs = 3

model:add(nn.Linear(ninputs, noutputs))

model:add(nn.LogSoftMax())

criterion = nn.ClassNLLCriterion()

-- define some input and target

-- to evaluate model

model:forward(input)

-- to evaluate loss

criterion:forward(model:forward(input), target)

-- to compute gradients

model:backward(input, criterion:backward(model.output, target))
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