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Outline

Today we’'ll discuss classification using logistic regression.

» Discriminative vs Generative Models
» Likelihood of Logistic Regression
» Using convex optimization to the obtain MLE

» Logistic Regression in torch



Classification : Generative Models

How are the inputs, tail length and height,
distributed given the class?

Model Pr(x | y = zebra)
Model Pr(x | y = donkey)

Example: Model both distributions are
multivariate normal with same covariance
matrix but different mean




Classification : Generative Models
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Discriminative Approach

Don't try to model the inputs x at all
Model the output y given the input x and the parameters for the model w

y ~ p(x,w)

Pros and cons for both approaches (see Murphy Chapter 8.6)

Focus on discriminative classification



Logistic Regression: Sigmoid Function

The sigmoid function, or o, (a.k.a. logistic or logit) is defined as
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Binary Classification: Logistic Regression

As in the case of linear regression, we model y given x € R™ and
parameters w € R”

Linear model parametrized by w € R™ composed with sigmoid filter
We have,
Pr(y =1|x,w) =o(x"w)

For prediction:
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Binary Classification : Logistic Regression




Bernoulli Random Variables

Bernoulli random variable X takes value in {0, 1}. We parametrize using
6 € [0,1].

p(1]6) =0
p(0]0)=1—0

More succinctly, we can write
plx|6)=06"(1-0)'""
Logistic Regression
y given x and parameter w is modelled as Bernoulli variable

y ~ Bernoulli(o(x” w))



Likelihood of Logistic Regression

Given data D = {(x, yi))i~; we can compute the likelihood of observing y
under the logistic regression model T

o X :
) _ T . .
73(" i p('y | X, w) = HBernoulh(yl | o(x; w)) <
i=1 le~
Yi 1 1-y;
=) () 2
14+e W 14+e>wW )/ e X7
| +e

Let’s look at the negative log likelihood for a single data point (x;, v;)

L(w;xi,y:) = —log(p(y: | o(x; w)))
= — (yi log(m:) + (1 — ;) log(1 — 7))
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Gradient and Hessian of NLL

The negative log likelihood is given by

m

L(w) = NLL(y | X, w) = = > (yi log(m:) + (1 — y;) log(1 — i)

=1

The gradient and the Hessian (with respect to w) can be computed as:

g=VuwL= sz mi—y) =X (m—y) " 0o st daned bevin

H=V,L= Zm(l —m)x'x; = X" diag(mi(1 — m;))X
" L.
Homework: Show that H is positive definite.
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NLL is convex and has a global minimum - Ty (1= fip)
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Iteratively Reweighted Least Squares (IRLS)

Apply Newton's method
g =X"(m—y)=-X"(y —m)
H, = X’s;X Sy -
1N 0
Newton’s update says: ARG X
Wit1 = W¢ — Hglgt o \
=w;+ XTS:X) "X (y — 7))
= (XTStX)_le(StXWt + Yy — ﬂ't) = (XTStX)_l(XtStZt)
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Multi-class, Softmax Formulation, Multinoulli
Logistic Regression as a Neural Network ‘J e {12, 3]
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Softmax in Torch

nn.SoftMax()




Likelihood for multi-class

Classes: {1,...,C}
Indicator function:
1 ify=c
I, = .
W) {0 otherwise

The parameters W is now an x C matrix

For a single data point (x, y) the likelihood is:

p(y | x, W) = Hﬂ'

And the negative log likelihood is

L(Wa X, y) = Z Hc(y) IOg(ﬂ-c)



Multiclass Logistic Regression in Torch

example-logistic-regression.lua

require ’nn’; require ’optim’;

model = nn.Sequential()

ninputs = 10; noutputs = 3
model:add(nn.Linear(ninputs, noutputs))
model:add(nn.LogSoftMax())

criterion = nn.ClassNLLCriterion()

-- define some input and target

-- to evaluate model

model:forward(input)

-- to evaluate loss
criterion:forward(model:forward(input), target)
-- to compute gradients

model:backward(input, criterion:backward(model.output, target))




