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Supervised Learning: Summary

I Training data is of the form 〈(xi, yi)〉where xi are features and yi is target

I We formulate a probabilistic (or deterministic) model for y | x,w

I Choose a suitable loss function; minimize training loss

I Use regularization or other techniques to reduce overfitting

I Use trained classifier to predict targets/labels on unseen xnew
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Unsupervised Learning

I Training data is of the form 〈(xi)〉mi=1

I Infer properties about the data

I Example: Clustering - can the data be grouped into categories?

I Example: Density Estimation

I Today: Dimensionality Reduction and Multi-dimensional Scaling (MDS)
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Outline

Today, we’ll study techniques for dimensionality reduction and
multidimensional scaling

I Principal Component Analysis (PCA)

I Kernel PCA

I Multidimensional Scaling: Reconstruct data from similarity or
dissimilarity measures
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Dimensionality Reduction

Why perform dimensionality reduction?

I Computational Reasons - time/storage efficiency

I Statistical Resaons - better generalization guarantees

I Visualization - helps understand data

Objective

I Lower dimensional representation that preserves essential properties
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Johnson-Lindenstrauss Lemma

Project data onto random k dimensional subspace

All pairwise distances are approximately preserved
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Principal Component Analysis (PCA)

PCA is a linear dimensionality reduction technique

Find the directions of maximum variance in the data 〈(xi)〉mi=1

Assume that data is centered, i.e.,
∑

i xi = 0

Find a set of orthogonal vectors v1, . . . ,vk

I The first principal component (PC) v1 is the direction of largest
variance

I The second PC v2 is the direction of largest variance orthogonal to v1

I The ith PC vi is the direction of largest variance orthogonal to
v1, . . . ,vi−1

Vn×k gives projection
zi = VTxi
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PCA: Directions that maximise variance

We are given i.i.d. data 〈(xi)〉mi=1; data matrix X

Want to find v1 ∈ Rn, ‖v1‖ = 1, that maximizes ‖Xv1‖2

Find v2,v3, . . . ,vk that are all successively orthogonal to previous
directions and maximise (as yet unexplained variance)
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Principal Component Analysis (PCA)
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PCA: Best Reconstruction

We are given i.i.d. data 〈(xi)〉mi=1; data matrix X

Find a k-dimensional linear projection that best ‘‘models’’ the data

Suppose Vk ∈ Rn×k is such that columns of Vk are orthogonal

Project data X on to subspace defined by V

Z = XVk

Minimize reconstruction error:

m∑
i=1

‖xi −VkVT
k xi‖2
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Principal Component Analysis (PCA)
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Equivalence between two objectives

Let v1 be the direction of projection

The point x is mapped to 〈v1,x〉v1, where ‖v1‖ = 1
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Finding Principal Components: SVD

Let X be them× n data matrix (say n < m)

Pair of singular vectors u ∈ Rm, v ∈ Rn and singular value σ ∈ R+ if

σu = Xv and σv = XTu

v is an eigenvector of XTX with eigenvalue σ2

u is an eigenvector of XXT with eigenvalue σ2
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Finding Principal Components: SVD

X = UΣVT

Thin SVD: U ism× n, Σ is n× n, V is n× n, UTU = VTV = I

Σ is diagonal with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

The first k principal components are first k columns of V
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PCA: Reconstruction Error

We have thin SVD: X = UΣVT

Let Vk be the matrix containing first k columns of V

Projection Z = XVk = UkΣk

Reconstruction error=
m∑
i=1

‖xi −VkVT
k xi‖2 =

n∑
j=k+1

σ2
i
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Eigenfaces

Source: http://vismod.media.mit.edu/vismod/demos/facerec/basic.html
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Latent Semantic Analysis

X is anm× n, n is the size of dictionary

xi is a vector of word counts (bag of words)

Reconstruction using k eigenvectors X ≈ ZVT
k , where Z = XVk

〈zi, zj〉 is probably a better notion of similarity than 〈xi,xj〉
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Howmany principal components to pick?
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PCA Summary

Algorithm: We’ve expressed PCA as SVD of data matrix X

Equivalently, we can use eigendecomposition of co-variance matrix XTX

Running Time:O(mnk) to compute k principal components (avoid
computing covariance matrix)

PCs are uncorrelated, but there may be non-linear (higher-order) effects

PCA depends on scale or units of measurement; it may be a good idea to
standardize data

PCA is sensitive to outliers
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PCA: Going beyond linearity

We can perform basis expansion φ(x) = (x1, x
2
1, x1x2, . . . , )

T
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Kernel PCA

Representation:

PCs can be expressed in terms of the datapoints xi. Why?

Suppose v1 = XTα, i.e.,v1 =
∑m

i=1 αixi

Objective

max
‖v1‖=1

vT
1 XTXv1 = max

‖αTXXTα‖=1
αT (XXT )2α

We only need K = XXT to computeα
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Kernel PCA

Objective

max
‖αTKα‖=1

αTK2α,

where K = XXT . What is the solutionα?
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Kernel PCA

As in the case of SVM, we can use many different types of kernels κ(x,x′)

Examples
I Linear kernel: κ(x,x′) = xTx′

I Polynomial kernel: κ(x,x′) = (1 + xTx′)d

I Gaussian (RBF) kernel: κ(x,x′) = exp(‖xT − x′‖2)
I Kernels useful for combinatorial objects: cosine, string kernel, etc.

Mercer’s Theorem

As long as κ always results in a positive definite Grammatrix, there exists a
high-dimensional feature space φ, such that κ(x,x′) = φ(x)Tφ(x)
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Multidimensional Scaling

Suppose for somem points in Rn we are given all pairwise distances in a
matrix D

Can we reconstruct x1, . . . ,xm, i.e., all of X?
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Multidimensional Scaling

Distances are preserved under translation, rotation, reflection, etc.

We cannot recover X exactly; we can determine X up to these
transformations

IfDij is the distance between points xi and xj , then

D2
ij = ‖xi − xj‖2

= xT
i xi − 2xT

i xj + xT
j xj

=Mii − 2Mij +Mjj

Here M = XXT is them×mmatrix of dot products

Exercise: Show that assuming
∑

i xi = 0, M can be recovered from D
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Multidimensional Scaling

Consider the (non-thin) SVD: X = UΣVT

We can write M as
M = XXT = UΣΣTUT

To reconstruct X̃, consider the eigendecomposition of M

M = UΛUT

Because, M is symmetric and positive semi-definite, UT = U−1 and all
entries of (diagonal matrix) Λ are non-negative

Let X̃ = UΛ1/2(= UΣ [after truncation])

If we are satisfied with approximate reconstruction, we can use truncated
eigendecomposition

27



Multidimensional Scaling: Comments

If the similarity matrix M is not positive semi-definite, cannot necessarily
find a Euclidean embeddding

Minimize stress function: Find z1, . . . , zm that minimizes

S(Z) =
∑
i 6=j

(Dij − ‖zi − zj‖)2

Many other types of stress functions
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