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Supervised Learning: Summary

v

Training data is of the form ((x;, y:)) where x; are features and y; is target

v

We formulate a probabilistic (or deterministic) model for y | x, w

v

Choose a suitable loss function; minimize training loss

v

Use regularization or other techniques to reduce overfitting

v

Use trained classifier to predict targets/labels on unseen xcw



Unsupervised Learning

v

Training data is of the form {(x;))}*,

v

Infer properties about the data

v

Example: Clustering - can the data be grouped into categories?

\4

Example: Density Estimation

v

Today: Dimensionality Reduction and Multi-dimensional Scaling (MDS)



Outline

Today, we'll study techniques for dimensionality reduction and
multidimensional scaling

» Principal Component Analysis (PCA)
» Kernel PCA

» Multidimensional Scaling: Reconstruct data from similarity or
dissimilarity measures



Dimensionality Reduction

Why perform dimensionality reduction?

» Computational Reasons - time/storage efficiency
» Statistical Resaons - better generalization guarantees
» Visualization - helps understand data

Objective

» Lower dimensional representation that preserves essential properties



Johnson-Lindenstrauss Lemma

Project data onto random k dimensional subspace

All pairwise distances are approximately preserved



Principal Component Analysis (PCA)

PCAis a linear dimensionality reduction technique

Find the directions of maximum variance in the data ((x;))i%;

Assume that data is centered, i.e,, >, x; = 0
Find a set of orthogonal vectors v, ..., vk

» The first principal component (PC) v; is the direction of largest
variance

» The second PC v, is the direction of largest variance orthogonal to v,

» The i PC v, is the direction of largest variance orthogonal to

Vi,..., Vi1

V.xk gives projection
z, = VTXi



PCA: Directions that maximise variance

We are given i.i.d. data ((x;))j~,; data matrix X

Want to find vi € R™, ||v1|| = 1, that maximizes || Xv;|?

Find vo,vs, ..., vy that are all successively orthogonal to previous
directions and maximise (as yet unexplained variance)



Principal Component Analysis (PCA)
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PCA: Best Reconstruction

We are given i.i.d. data ((x;));~; data matrix X
Find a k-dimensional linear projection that best “models” the data
Suppose V, € R™** js such that columns of V, are orthogonal
Project data X on to subspace defined by V

Z =XV,

Minimize reconstruction error:

m
D lxi = Vi Vi f?

i=1



Principal Component Analysis (PCA)




Equivalence between two objectives

Let v; be the direction of projection

The point x is mapped to (vi,x)v1, where ||vi| =1



Finding Principal Components: SVD

Let X be the m x n data matrix (say n < m)

Pair of singular vectors u € R™, v € R™ and singular value ¢ € R if
cu=Xv and ov=X"u

v is an eigenvector of X7 X with eigenvalue o2

u is an eigenvector of XX7 with eigenvalue o2



Finding Principal Components: SVD
X =Uxv”T
ThinSVD: Uism xn, Zisn xn, Visn xn, UTU=VTV =1
Y isdiagonalwithoy > 02> - >0, >0

The first & principal components are first k£ columns of V



PCA: Reconstruction Error

We have thin SVD: X = UXV7T
Let V;, be the matrix containing first £ columns of V
Projection Z = XV = U, X

Reconstruction error—ZHxl ViVix|? = o}
=1 Jj=k+1






(d)



Eigenfaces

Source: http://vismod.media.mit.edu/vismod/demos/facerec/basic.html



Latent Semantic Analysis

X isanm x n, nis the size of dictionary
x; is a vector of word counts (bag of words)
Reconstruction using k eigenvectors X ~ ZV{, where Z = XV,

(z:,2;) is probably a better notion of similarity than (x;, x;)



How many principal components to pick?

train set reconstruction errar

100

rum PCs

300

400

test sel recanstruction errar

100 200 300 400 500
num PCs.



PCA Summary

Algorithm: We've expressed PCA as SVD of data matrix X
Equivalently, we can use eigendecomposition of co-variance matrix X7X

Running Time: O(mnk) to compute k principal components (avoid
computing covariance matrix)

PCs are uncorrelated, but there may be non-linear (higher-order) effects

PCA depends on scale or units of measurement; it may be a good idea to
standardize data

PCA is sensitive to outliers

20
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Kernel PCA

Representation:

PCs can be expressed in terms of the datapoints x;. Why?

Suppose vi = X", ie,vi = 37 | aix;

Objective
max vi X Xv; = max o’ (XX") e
[lvil=1 laTXXT a|=1

We only need K = XX to compute o

22



Kernel PCA

Objective

T2
max o Ka,
laTKa|=1

where K = XX7. What is the solution a?
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Kernel PCA

As in the case of SVM, we can use many different types of kernels x(x, x")

Examples

» Linear kernel: r(x,x’) = x”

!
X
» Polynomial kernel: x(x,x’) = (1 + x7x’)?
» Gaussian (RBF) kernel: k(x,x") = exp(||x” — x||?)

» Kernels useful for combinatorial objects: cosine, string kernel, etc.

Mercer’'s Theorem

As long as « always results in a positive definite Gram matrix, there exists a
high-dimensional feature space ¢, such that x(x, x') = ¢(x)7T ¢(x)
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Multidimensional Scaling

Suppose for some m points in R we are given all pairwise distancesin a
matrix D

Can we reconstruct x1, ..., X, i.e., all of X?

25



Multidimensional Scaling

Distances are preserved under translation, rotation, reflection, etc.

We cannot recover X exactly; we can determine X up to these
transformations

If D;; is the distance between points x; and x;, then
D = [xi — x5

T T T
=X; Xi — 2X; Xj +Xj X;

= M;; — 2M;; + M,
Here M = XX7 is the m x m matrix of dot products

Exercise: Show that assuming Y. x; = 0, M can be recovered from D
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Multidimensional Scaling

Consider the (non-thin) SVD: X = UXZ VT

We can write M as
M= XX = uzxTu?

To reconstruct X, consider the eigendecomposition of M
M = UAU"

Because, M is symmetric and positive semi-definite, U7 = U~! and all
entries of (diagonal matrix) A are non-negative

Let X = UAY?(= UX [after truncation])

If we are satisfied with approximate reconstruction, we can use truncated
eigendecomposition
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Multidimensional Scaling: Comments

If the similarity matrix M is not positive semi-definite, cannot necessarily
find a Euclidean embeddding

Minimize stress function: Find zy, . . ., z,, that minimizes
S(Z) = (Dij — ||zi — 1))
i#]

Many other types of stress functions
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