Machine learning - HT 2016 9. Dimensionality Reduction & Multidimensional Scaling

Varun Kanade

University of Oxford March 2, 2016

Supervised Learning: Summary

- Training data is of the form $\langle (\mathbf{x}_i, y_i) \rangle$ where \mathbf{x}_i are features and y_i is target
- \blacktriangleright We formulate a probabilistic (or deterministic) model for $y \mid \mathbf{x}, \mathbf{w}$
- Choose a suitable loss function; minimize training loss
- Use regularization or other techniques to reduce overfitting
- $\blacktriangleright\,$ Use trained classifier to predict targets/labels on unseen ${\bf x}_{\rm new}$

Unsupervised Learning

- \blacktriangleright Training data is of the form $\langle (\mathbf{x}_i)
 angle_{i=1}^m$
- Infer properties about the data
- > Example: Clustering can the data be grouped into categories?
- Example: Density Estimation
- > Today: Dimensionality Reduction and Multi-dimensional Scaling (MDS)

Outline

Today, we'll study techniques for dimensionality reduction and multidimensional scaling

- Principal Component Analysis (PCA)
- Kernel PCA
- Multidimensional Scaling: Reconstruct data from similarity or dissimilarity measures

Dimensionality Reduction

Why perform dimensionality reduction?

- Computational Reasons time/storage efficiency
- Statistical Resaons better generalization guarantees
- Visualization helps understand data

Objective

Lower dimensional representation that preserves essential properties

Johnson-Lindenstrauss Lemma

Project data onto random \boldsymbol{k} dimensional subspace

All pairwise distances are approximately preserved

Principal Component Analysis (PCA)

PCA is a linear dimensionality reduction technique

Find the directions of maximum variance in the data $\langle (\mathbf{x}_i)
angle_{i=1}^m$

Assume that data is centered, *i.e.*, $\sum_i \mathbf{x}_i = \mathbf{0}$

Find a set of orthogonal vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$

- The first principal component (PC) v₁ is the direction of largest variance
- The second PC \mathbf{v}_2 is the direction of largest variance orthogonal to \mathbf{v}_1
- ► The ith PC v_i is the direction of largest variance orthogonal to v₁,..., v_{i-1}

 $\mathbf{V}_{n imes k}$ gives projection

$$\mathbf{z}_i = \mathbf{V}^T \mathbf{x}_i$$

PCA: Directions that maximise variance

We are given i.i.d. data $\langle (\mathbf{x}_i) \rangle_{i=1}^m$; data matrix **X**

Want to find $\mathbf{v}_1 \in \mathbb{R}^n$, $\|\mathbf{v}_1\| = 1$, that maximizes $\|\mathbf{X}\mathbf{v}_1\|^2$

Find v_2, v_3, \dots, v_k that are all successively orthogonal to previous directions and maximise (as yet unexplained variance)

Principal Component Analysis (PCA)

PCA: Best Reconstruction

We are given i.i.d. data $\langle (\mathbf{x}_i)
angle_{i=1}^m$; data matrix \mathbf{X}

Find a k-dimensional linear projection that best "models" the data Suppose $\mathbf{V}_k \in \mathbb{R}^{n \times k}$ is such that columns of \mathbf{V}_k are orthogonal Project data \mathbf{X} on to subspace defined by \mathbf{V}

$$\mathbf{Z} = \mathbf{X}\mathbf{V}_k$$

Minimize reconstruction error:

$$\sum_{i=1}^m \|\mathbf{x}_i - \mathbf{V}_k \mathbf{V}_k^T \mathbf{x}_i\|^2$$

Principal Component Analysis (PCA)

Equivalence between two objectives

Let \mathbf{v}_1 be the direction of projection

The point ${\bf x}$ is mapped to $\langle {\bf v}_1, {\bf x} \rangle {\bf v}_1$, where $\| {\bf v}_1 \| = 1$

Finding Principal Components: SVD

Let \mathbf{X} be the $m \times n$ data matrix (say n < m)

Pair of singular vectors $\mathbf{u} \in \mathbb{R}^m$, $\mathbf{v} \in \mathbb{R}^n$ and singular value $\sigma \in \mathbb{R}^+$ if

 $\sigma \mathbf{u} = \mathbf{X} \mathbf{v}$ and $\sigma \mathbf{v} = \mathbf{X}^T \mathbf{u}$

 \mathbf{v} is an eigenvector of $\mathbf{X}^T\mathbf{X}$ with eigenvalue σ^2

 \mathbf{u} is an eigenvector of $\mathbf{X}\mathbf{X}^T$ with eigenvalue σ^2

Finding Principal Components: SVD

 $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$

Thin SVD: U is $m \times n$, Σ is $n \times n$, V is $n \times n$, $\mathbf{U}^T \mathbf{U} = \mathbf{V}^T \mathbf{V} = \mathbf{I}$

 Σ is diagonal with $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$

The first k principal components are first k columns of V

PCA: Reconstruction Error

We have thin SVD: $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$

Let \mathbf{V}_k be the matrix containing first k columns of \mathbf{V}

Projection $\mathbf{Z} = \mathbf{X}\mathbf{V}_k = \mathbf{U}_k \mathbf{\Sigma}_k$

Reconstruction error
$$=\sum_{i=1}^m \|\mathbf{x}_i - \mathbf{V}_k \mathbf{V}_k^T \mathbf{x}_i\|^2 = \sum_{j=k+1}^n \sigma_i^2$$

rank 200

rank 2

(b)

rank 5

(c)

(d)

Eigenfaces

Source: http://vismod.media.mit.edu/vismod/demos/facerec/basic.html

Latent Semantic Analysis

 ${\bf X}$ is an $m\times n$, n is the size of dictionary

 \mathbf{x}_i is a vector of word counts (bag of words)

Reconstruction using k eigenvectors $\mathbf{X} \approx \mathbf{Z} \mathbf{V}_k^T$, where $\mathbf{Z} = \mathbf{X} \mathbf{V}_k$

 $\langle {f z}_i, {f z}_j
angle$ is probably a better notion of similarity than $\langle {f x}_i, {f x}_j
angle$

How many principal components to pick?

PCA Summary

Algorithm: We've expressed PCA as SVD of data matrix ${\bf X}$

Equivalently, we can use eigendecomposition of co-variance matrix $\mathbf{X}^T \mathbf{X}$

Running Time: O(mnk) to compute k principal components (avoid computing covariance matrix)

PCs are uncorrelated, but there may be non-linear (higher-order) effects

PCA depends on scale or units of measurement; it may be a good idea to standardize data

PCA is sensitive to outliers

PCA: Going beyond linearity

We can perform basis expansion $\phi(\mathbf{x}) = (x_1, x_1^2, x_1 x_2, \dots,)^T$

Kernel PCA

Representation:

PCs can be expressed in terms of the datapoints x_i . Why?

Suppose $\mathbf{v}_1 = \mathbf{X}^T \boldsymbol{lpha}$, *i.e.*, $\mathbf{v}_1 = \sum_{i=1}^m lpha_i \mathbf{x}_i$

Objective

$$\max_{\|\mathbf{v}_1\|=1} \mathbf{v}_1^T \mathbf{X}^T \mathbf{X} \mathbf{v}_1 = \max_{\|\boldsymbol{\alpha}^T \mathbf{X} \mathbf{X}^T \boldsymbol{\alpha}\|=1} \boldsymbol{\alpha}^T (\mathbf{X} \mathbf{X}^T)^2 \boldsymbol{\alpha}$$

We only need $\mathbf{K} = \mathbf{X} \mathbf{X}^T$ to compute $\boldsymbol{\alpha}$

Kernel PCA

Objective

$$\max_{\|\boldsymbol{\alpha}^T \mathbf{K} \boldsymbol{\alpha}\|=1} \boldsymbol{\alpha}^T \mathbf{K}^2 \boldsymbol{\alpha},$$

where $\mathbf{K} = \mathbf{X}\mathbf{X}^T$. What is the solution α ?

Kernel PCA

As in the case of SVM, we can use many different types of kernels $\kappa(\mathbf{x},\mathbf{x}')$

Examples

- Linear kernel: $\kappa(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$
- Polynomial kernel: $\kappa(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^d$
- Gaussian (RBF) kernel: $\kappa(\mathbf{x}, \mathbf{x}') = \exp(||\mathbf{x}^T \mathbf{x}'||^2)$
- ► Kernels useful for combinatorial objects: cosine, string kernel, etc.

Mercer's Theorem

As long as κ always results in a positive definite Gram matrix, there exists a high-dimensional feature space ϕ , such that $\kappa(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x})$

Multidimensional Scaling

Suppose for some m points in \mathbb{R}^n we are given all pairwise distances in a matrix $\mathbf D$

Can we reconstruct $\mathbf{x}_1, \ldots, \mathbf{x}_m$, i.e., all of X?

Distances are preserved under translation, rotation, reflection, etc.

We cannot recover ${\bf X}$ exactly; we can determine ${\bf X}$ up to these transformations

If D_{ij} is the distance between points \mathbf{x}_i and \mathbf{x}_j , then

$$D_{ij}^2 = \|\mathbf{x}_i - \mathbf{x}_j\|^2$$

= $\mathbf{x}_i^T \mathbf{x}_i - 2\mathbf{x}_i^T \mathbf{x}_j + \mathbf{x}_j^T \mathbf{x}_j$
= $M_{ii} - 2M_{ij} + M_{jj}$

Here $\mathbf{M} = \mathbf{X}\mathbf{X}^T$ is the $m \times m$ matrix of dot products

Exercise: Show that assuming $\sum_i \mathbf{x}_i = \mathbf{0}$, \mathbf{M} can be recovered from \mathbf{D}

Multidimensional Scaling

Consider the (non-thin) SVD: $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$

We can write ${\bf M}$ as

$$\mathbf{M} = \mathbf{X}\mathbf{X}^T = \mathbf{U}\mathbf{\Sigma}\mathbf{\Sigma}^T\mathbf{U}^T$$

To reconstruct $\tilde{\mathbf{X}}$, consider the eigendecomposition of \mathbf{M}

 $\mathbf{M} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$

Because, M is symmetric and positive semi-definite, $\mathbf{U}^T = \mathbf{U}^{-1}$ and all entries of (diagonal matrix) Λ are non-negative

Let $\tilde{\mathbf{X}} = \mathbf{U} \mathbf{\Lambda}^{1/2} (= \mathbf{U} \mathbf{\Sigma}$ [after truncation])

If we are satisfied with approximate reconstruction, we can use truncated eigendecomposition

If the similarity matrix ${\bf M}$ is not positive semi-definite, cannot necessarily find a Euclidean embeddding

Minimize stress function: Find $\mathbf{z}_1, \ldots, \mathbf{z}_m$ that minimizes

$$S(\mathbf{Z}) = \sum_{i \neq j} (D_{ij} - \|\mathbf{z}_i - \mathbf{z}_j\|)^2$$

Many other types of stress functions