Announcements

- Practical Next Week - No submission
- Final Exam: Pick up on Monday
- Material covered next week is not required for exam
- Will shut down Piazza on Sunday
Today we will see some approaches to clustering

- Defining clustering objective
- k-Means for clustering
- Hierarchical Clustering
- Spectral Clustering
Clustering

Often data can be grouped together into subsets that are coherent. However, this grouping may be subjective. It is hard to define a general framework.

Two types of clustering algorithms

1. **Feature-based** - Points are represented as vectors in \mathbb{R}^n
2. **(Dis)similarity-based** - Only know pairwise (dis)similarities

Two types of clustering methods

1. **Flat** - Partition the data into k clusters
2. **Hierarchical** - Organise data as clusters, clusters of clusters, and so on
Defining Dissimilarity

- Weighted distance between (real-valued) attributes

\[D(x, x') = f \left(\sum_{i=1}^{n} w_i d_i(x_i, x'_i) \right) \]

- In the simplest setting \(w_i = 1 \) and \(d_i(x_i, x'_i) = (x_i - x'_i)^2 \) and \(f(z) = \sqrt{z} \)

- Weights allow us to emphasise different variables differently

- If features are ordinal or categorical then define distance suitably

- Standardisation (mean 0, variance 1) may or may not help
Helpful Standardisation
Unhelpful Standardisation
Partition Based Clustering : \(k \)-Means

Want to partition the data into subsets \(C_1, \ldots, C_k \), where \(k \) is fixed in advance

Define quality of a partition by

\[
W(C) = \frac{1}{2} \sum_{j=1}^{k} \sum_{i, i' \in C_j} d(x_i, x_{i'})
\]

If we use \(d(x, x') = \|x - x'\|^2 \), then

\[
W(C) = \sum_{j=1}^{k} \sum_{i \in C_j} \|x_i - \mu_j\|^2
\]

where \(\mu_j = \frac{1}{|C_j|} \sum_{i \in C_j} x_i \)

The objective is minimising the sum of squares of distances to the mean within each cluster
k-Means Objective

Minimise jointly over partitions \(C_1, \ldots, C_k \) and \(\mu_1, \ldots, \mu_k \)

\[
W(C) = \sum_{j=1}^{k} \sum_{i \in C_j} \| x_i - \mu_j \|^2
\]

This problem is NP-hard even for \(k = 2 \) for points in \(\mathbb{R}^n \)

If we fix \(\mu_1, \ldots, \mu_j \), finding a partition \((C_j')_{j=1}^{k} \) that minimises \(W \) is easy

\[
C_j = \{ i \mid \| x_i - \mu_j \| = \min_{j'} \| x_i - \mu_{j'} \| \}
\]

If we fix the clusters \(C_1, \ldots, C_k \) minimising \(W \) with respect to \((\mu_j)_{j=1}^{k} \) is easy

\[
\mu_j = \frac{1}{|C_j|} \sum_{i \in C_j} x_i
\]

Iteratively run these two steps - assignment and update
The k-Means Algorithm

Does the algorithm always converge?

Yes, because the W function decreases every time a new partition is used; there are only finitely many partitions

Convergence may be very slow in the worst-case, but typically fast on real-world instances

Convergence is probably to a local minimum

Run multiple times with random initialisation

Can use other criteria: k-medoids, k-centres, etc.

Selecting the right k is not easy: plot W against k and identify a "kink"
Clustering

US election 2016: Mitt Romney warns Trump not fit to run country

Paper that says human hand was ’designed by Creator’ sparks concern

Mystery of cosmic radio bursts grows even more intriguing

Lionel Messi combines with Neymar to score vs. Rayo

Clustering is often ill-posed.
How would you group the above four articles into 3 groups?
Hierarchical Clustering

Hierarchical structured data exists all around us

- Measurements of different species and individuals within species
- Top-level and low-level categories in news articles
- Country, county, town level data

Two General Strategies

- **Agglomerative**: Bottom-up, clusters formed by merging smaller clusters
- **Divisive**: Top-down, clusters formed by splitting larger clusters

Visualise this as a dendogram or tree
Measuring Dissimilarity at Cluster Level

To find hierarchical clusters we need to define dissimilarity at cluster level, not just at datapoints.

Suppose we have dissimilarity at datapoint level, e.g., \(d(x, x') = \|x - x'\| \)

Few different proposals at cluster level, say \(C \) and \(C' \)

- **Single Linkage**
 \[
 D(C, C') = \min_{x \in C, x' \in C'} d(x, x')
 \]

- **Complete Linkage**
 \[
 D(C, C') = \max_{x \in C, x' \in C'} d(x, x')
 \]

- **Average Linkage**
 \[
 D(C, C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C, x' \in C'} d(x, x')
 \]
Measuring Dissimilarity at Cluster Level

- **Single Linkage**
 \[D(C, C') = \min_{x \in C, x' \in C'} d(x, x') \]

- **Complete Linkage**
 \[D(C, C') = \max_{x \in C, x' \in C'} d(x, x') \]

- **Average Linkage**
 \[D(C, C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C, x' \in C'} d(x, x') \]
Agglomerative Clustering Algorithm

1. Initialise clusters as singletons $C_i = \{i\}$
2. Initialise clusters available for merging $S = \{1, \ldots, m\}$
3. Repeat
 a. Pick 2 most similar clusters, $(j, k) = \arg\min_{j, k \in S} D(j, k)$
 b. Let $C_l = C_j \cup C_k$
 c. If $C_l = \{1, \ldots, m\}$, break;
 d. Set $S = (S \setminus \{j, k\}) \cup \{l\}$
 e. Update $D(i, l)$ for all $i \in S$
Dendogram

Binary tree, representing clusters as they were merged

The height of a node represents dissimilarity

Cutting the dendogram at some level gives a partition of data
Spectral Clustering
Spectral Clustering
Limitations of k-means

k-means will typically form clusters that are spherical, elliptical, convex.

Kernel PCA followed by k-means

Spectral clustering is a (related) alternative that often works better.
Spectral Clustering

Construct a graph from data; one node for every point in dataset

Use similarity measure, *e.g.*, \(s_{i,j} = \exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / \sigma) \)

Construct mutual \(K \)-nearest neighbour graph, *i.e.*, \((i, j)\) is an edge if either \(i \) is among the \(K \) nearest neighbours of \(j \) or vice versa

The weight of edge \((i, j)\), if it exists is \(s_{i,j} \)
Spectral Clustering
Spectral Clustering

Use graph partitioning algorithms

Mincut can give bad cuts (only one node on one side of the cut)

Multi-way cuts, balanced cuts, are typically NP-hard to compute

Relaxations of these problems give eigenvectors of Laplacian

\(W \) is the weighted adjacency matrix

\(D \) is (diagonal) degree matrix:

\[
D_{ii} = \sum_j W_{ij}
\]

Laplacian \(L = D - W \)

Normalised Laplacian:

\[
\tilde{L} = I - D^{-1}W
\]
Spectral Clustering

Let us study the eigenvectors of the Laplacian $L = D - W$

The all one's vector 1 is an eigenvector of L with eigenvalue 0. Suppose G is disconnected with pieces G_1, G_2. Let v be a vector that is orthogonal to 1 with values α for all nodes in G_1 and β for all nodes in G_2. Then v is also an eigenvector with eigenvalue 0. Thus v reveals the partition of G.

Spectral Clustering: Consider v_1, \ldots, v_k the eigenvectors of L corresponding to the lowest eigenvalues (taking multiplicity into account) but excluding 1. Use this as a feature map to perform clustering, say e.g. using k-means.

Remark: Using 1 avoids high-degree nodes having undue influence.
Spectral Clustering

Concentric Circles Example:
Here $v_1, v_2 \perp \perp$, and are the eigenvectors corresponding to second and third lowest eigenvalues.
Clustering is grouping together similar data in a larger collection of heterogeneous data.

Definition of good clusters often user-dependent.

Clustering algorithms in feature space, e.g., k-Means.

Clustering algorithms that only use (dis)similarities: k-Medoids, hierarchical clustering.

Spectral clustering when clusters may be non-convex.
Next Time

- Reinforcement Learning