Machine learning - HT 2016 11. Reinforcement Learning

Varun Kanade

University of Oxford March 9, 2016

Textbooks

- An Introduction to Reinforcement Learning. Richard Sutton and Andrew Barto. MIT Press, 1998
 - Available online (html format)
 - Draft second edition
- Algorithms for Reinforcement Learning. Csaba Szepesvári. Morgan and Claypool, 2010
 - Available online
 - Terse and mathematical
- Course by David Silver (lectures on youtube)

Outline

Overview of reinforcement learning.

- Formulation difference from other learning paradigms
- Markov Decision Processes
- Reward, Return, Value function, Policy
- Algorithms for policy evaluation and optimisation

Reinforcement Learning

How is RL different from other paradigms in ML?

- No supervisor, only a reward signal
- Unlike unsupervised learning not really looking for hidden structure; goal is to maximise reward
- Feedback may be delayed, long-term effects of actions
- > Data is sequential and not i.i.d.; time plays an important role
- Tradeoff between exploration and exploitation

Examples of Reinforcement Learning

- Beat world champion at Go
- Fly helicopter and perform stunts [video]
- Make(?) money on the stock market
- Make robots walk
- Play video games

Reward

- A reward R_t at time t is a scalar signal
- Indicates performance of agent at time t
- Agent's goal is to maximise cumulative reward

Reward Hypothesis

All goals can be described by the maximisation of expected cumulative reward

Examples of Reward

Playing Go

- \$1 million for winning
- -\$1 million for losing

Flying a helicopter

- Positive reward for doing tricks
- Negative reward for crashing

Investing on the stock market

Reinforcement Learning: Sequential Decision Making

Goal: Select actions to maximise total future reward

Actions have long term consequences

Reward may be delayed

At times, it may be imperative to sacrifice immediate reward to get long-term reward

Examples

- Blocking an opponent's move, sacrificing a rook
- Financial investment
- Refuelling a helicopter
- Getting oxygen in seaquest [video]

Agent and Environment

- t denotes discrete time
- At time step t the agent does the following:
 - Receive reward R_t (from the previous step)
 - Observe state S_t
 - Execute action A_t
- At time step t the environment "does" the following:
 - ▶ Update state to *S*_{*t*+1} based on action *A*_{*t*}
 - Emit reward R_{t+1}

Markov Decision Process (MDP)

A Markov decision process (MDP) is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- S is a finite set of states
- A is a finite set of actions
- \mathcal{P} is a state transition probability matrix

$$\mathcal{P}^{a}_{s,s'} = \Pr[S_{t+1} = s' \mid S_t = s, A_t = a]$$

R is a reward function

$$\mathcal{R}_s^a = \Pr[R_{t+1} = r \mid S_t = s, A_t = a]$$

• $\gamma \in [0,1]$ is a discount factor

Are real-world problems really Markovian?

Example: Student MDP

Components of an RL agent

Goal: Maximise expected cumulative discounted future reward

Expected Return
$$:= G_t = \mathbb{E}[\sum_{j=1}^{\infty} \gamma^{j-1} R_{t+j}]$$

Model: Agent's representation of the environment (transitions)

Policy: How the agent chooses actions given a state

Value Function: How much long term reward can be achieved from a given state

Why discount?

Why should we consider discounted reward rather than just add up?

- Mathematically more convenient formulation to deal with
- Don't have infinite returns because of positive reward cycles in MDP
- Captures the idea that future may be "uncertain"
- Bird in hand vs two in bush (especially true for monetary reward)
- Can use $\gamma = 1$ if MDP is episodic

Model

- A model helps predict future states and rewards given current state and action
- \mathcal{P} (stochastically) determines the next state

$$\mathcal{P}^{a}_{s,s'} = \Pr[S_{t+1} = s' \mid S_t = s, A_t = a]$$

 \blacktriangleright \mathcal{R} (stochastically) determines the immediate reward

$$\mathcal{R}_s^a = \Pr[R_{t+1} = r \mid S_t = s, A_t = a]$$

- Model-based reinforcement learning (planning)
- Model-free reinforcement learning (trial and error)

Policy

- A policy describes the agent's behaviour or strategy
- Map each state to an action
- Deterministic Policy: $a = \pi(s)$
- Stochastic Policy: $\pi(a \mid s) = \Pr[A_t = a \mid S_t = s]$

Reinforcement Learning: Prediction and Control

Prediction

- Policy is fixed
- Evaluate the future reward (return) from each state

Control

Find the policy that maximises future reward

Value Function

- Value function defines expected future reward
- Useful for defining quality (goodness/badness) of a given state
- Useful to select a suitable action (policy improvement)

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$$

Learning vs Planning

Two fundamental problems in sequential decision making

Reinforcement Learning

- Environment is unknown (observed through trial and error)
- Agent interacts with the environment
- Agent improves policy/strategy/behaviour through this interaction

Planning

- Model of the environment is known
- Agent does not play directly with the environment
- Compute good (optimal) policy/strategy through simulation, reasoning, search

Value Function and Action-Value Function

State-Value Function

The state-value function v_π(s) for an MDP is the expected return starting from state s, and then following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

Action-Value Function

The action-value function q_π(s, a) for an MDP is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

Bellman Expectation Equation

State-Value Function

The state-value function satisfies the fixed-point equation. It can be decomposed into reward at current time, plus the discounted value at the successor state.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$$

Action-Value Function

The action-value function also satisfies a similar relationship.

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a]$$

Evaluating a Random Policy in the Small Gridworld

- No discounting, $\gamma = 1$
- States 1 to 14 are not terminal, the grey state is terminal
- ▶ All transitions have reward −1, no transitions out of terminal states
- If transitions lead out of grid, stay where you are
- Policy: Move north, south, east, west with equal probability

Policy Evaluation

_									 			
	0.0	0.0	0.0	0.0	0.0	-1.0	-1.0	-1.0	0.0	-1.7	-2.0	-2.0
Γ	0.0	0.0	0.0	0.0	-1.0	-1.0	-1.0	-1.0	-1.7	-2.0	-2.0	-2.0
	0.0	0.0	0.0	0.0	-1.0	-1.0	-1.0	-1.0	-2.0	-2.0	-2.0	-1.7
	0.0	0.0	0.0	0.0	-1.0	-1.0	-1.0	0.0	-2.0	-2.0	-1.7	0.0
		<i>k</i> =	= 0			<i>k</i> =	= 1			<i>k</i> =	= 2	

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0
	<i>k</i> =	= 3	

0.0	-6.1	-8.4	-9.0		
-6.1	-7.7	-8.4	-8.4		
-8.4	-8.4	-7.7	-6.1		
-9.0	-8.4	-6.1	0.0		
k = 10					

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0
	<i>k</i> =	- m	

Policy Improvement

k = 0

	¢‡>	\Leftrightarrow	\Leftrightarrow
⇐	\Leftrightarrow	\Leftrightarrow	
\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow
\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	

Random Policy

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

-2.0 -2.0 -1.7

0.0

	Ļ		\Leftrightarrow
1	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow
\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	ţ
\Leftrightarrow	\Leftrightarrow	→	

$$k = 1$$

k

$$= 2$$
 $\begin{array}{|c|c|c|} \hline 0.0 \\ \hline -1.7 \\ \hline -2.0 \end{array}$

Policy Improvement

k = 3

$$k = 10$$

$$k = \infty$$

	Ļ	Ļ	Ļ
Ť	Ļ	Ļ	÷
Ť	ţ	Ļ	Ļ
ҍ	\rightarrow	\rightarrow	

Optimal Policy

Bellman Optimality Equations

State-Value Function

> The *optimal state-value function* satisfies the fixed point equation.

$$v_*(s) = \max_{a \in \mathcal{A}} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$
$$= \max_{a \in \mathcal{A}} q_*(s, a)$$

Action-Value Function

> The optimal action-value function also satisfies a fixed point equation.

$$q_*(s,a) = \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a] \\ = \mathbb{E}[R_{t+1} + \gamma \max_{a' \in \mathcal{A}} q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

Optimal Policy

$$\pi^{*}(s) = \operatorname*{argmax}_{a} q_{*}(s, a)$$

= $\mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1}) | S_{t} = s, A_{t} = a]$

Model-Free Reinforcement Learning

- If we know the model, based on optimality equations we can, possibly with great computational effort, solve the MDP to find an optimal policy
- In reality, we don't know the MDP but can try to learn v_{*} and q_{*} approximately through interaction
- Monte Carlo Methods

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

Temporal difference method, e.g., TD(0)

$$V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1} - V(S_t)))$$

Important to explore as well as exploit

Reinforcement Learning: Exploration vs Exploitation

- Learning is through trial and error
- Discovering good policy requires diverse experiences
- Should not lose too much reward during exploration
- Exploration: Discover more information about the environment
- Exploitation: Use known information to maximise reward

Examples: Exploration vs Exploitation

Video Game Playing

 In seaquest, if you never try to get oxygen, only limited potential for reward

Restaurant Selection

Try the new American burger place, or go to your favourite curry place?

Online Advertisements

Keep showing money-making ads or try new ones?

Very Large MDPs

Source: David Silver

Function approximation

- Approximate $q_*(s, a)$ using a convnet
- Requires new training procedures

Source: Mnih *et al.* (Nature 2015)

Summary: What we did

In the past 8 weeks we've seen machine learning techniques from Gauss to the present day

Supervised Learning

- Linear regression, logistic regression, SVMs
- Neural networks, deep learning, convolutional networks
- Loss functions, regularisation, maximum likelihood, basis expansion, kernel trick

Unsupervised Learning

- Dimensionality reduction: PCA, Johnson Lindenstrauss
- Clustering: k-means, heirarchical clustering, spectral clustering

Reinforcement Learning

MDPs, prediction, control, Bellman equations

Summary: What we did not

ML Topics

- Boosting, bagging, decision trees, random forests
- Bayesian approaches, graphical models, inference
- Dealing with very high-dimensional data
- More than half of Murphy's book

Further Exploration

- Lots of online videos, videolectures.net, ML summer schools
- ML toolkits: torch, theano, tensor flow, sci-kit learn, R
- Conferences: NIPS, ICML, COLT, UAI, ICLR, AISTATS, ACL, CVPR, ICCV
- Arxiv: cs.LG, cs.AI, ml-news mailing list, podcasts, blogs, reddit