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Classifying digits and tuning optimizers

In this practical, we address the problem of classification.

Given the MNIST dataset which consists of 1024-dimensional inputs corresponding to pixels of
a 32× 32 image showing a handwritten digit from 0 to 9, and corresponding labels stating what
digit the image shows (in the code the class labels range from 1− 10 since Lua is 1-indexed), the
goal is to learn a classifier that predicts the class (label) of several test-set inputs.

This practical’s files can be found here: https://github.com/oxford-cs-ml-2016/practical3

Read README.md for setup instructions for the lab machine. Clone the entire repository or
download all 3 .lua files.

Task 1: Introduction and Review

Here, we’ll look at optimizing a simple function of one variable, just to get a feel of how the
optimizer works.

In the models we will be and have been looking at, our strategy always takes this form:

• get a dataset, consisting of m pairs (xi, yi)
• define a model with parameters w, called fw(x), that tries to learn a mapping from our

inputs x to our targets (aka labels) y

• define a loss function that tells us how good our model fits our data, i.e.

L(w) =
n∑

i=1
`(fw(x), yi)

where `(prediction, target) is our loss (error penalty) function, e.g. the squared error
`(prediction, target) = (prediction− target)2 which we used for regression last time.

• find a model that makes our error on the training set, L(w), small. To do this weminimize
it over w. Each value of w gives a different model fw, and we’re searching an infinite set
of models for a good one.

To understand how the last step translates into code, we’ll minimize a useless toy example
function:

f(x) = 1
2x2 + x sin(x)

which has the following gradient: (1-dimensional, since f is univariate)

∇xf(x) = [x + x cos x + sin x].

Take a look at simple_example.lua closely, making sure you understand what this feval
function does each time it is called by the optim library.
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Figure 1: plot of the function

The plot was generated in WolframAlpha: http://www.wolframalpha.com/input/?i=plot+0.
5*x%5E2+%2B+x+sin%28x%29+from+-3+to+6.

Exercise (not for handin): change the initialization point of the function to make the
optimization converge to a different local minimum. Compare the local minimum you find to
the one seen in the plot.

When training our models, the only difference is inside the feval function and the setup code
that we need before it, to load our dataset. Last week, the way feval was written, instead of
computing the real gradient of the function L(w) that we have above which involves handling
all the data, we computed the gradient of just one term in the sum so we only use one data
point. If we randomly sample this point, on average we will get the same value as L(w). The
difference is that this estimate has high variance (it is noisy, i.e., it varies a lot depending on
which data point we sampled) but it is far cheaper to compute, especially for a large dataset.
SGD turns out to converge fine even though the gradient is noisy.

The problem is that our estimate of the gradient will be very noisy. We could make a tradeoff
by taking a small subset of the dataset, and computing the gradient over this instead, i.e., using
mini-batches. This will give us gradients that are both less noisy and still cheap to compute.

This is what we will be doing this week, albeit with a different loss function and with different
data and a different task: classification of handwritten digits using logistic regression.

Read over the code in practical3.lua, focusing on the sections after the data gets loaded and
particularly the feval function.
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Optional: Brief overview of backward and forward

We’ll see how these functions are implemented later, but here is a brief overview if you are
curious. For sake of explanation, let’s say we only feed in one data point, and we’ll use the same
notation as earlier.

• out = model:forward(x_i) computes fw(xi) where fw is our model with its current
parameters w, and stores the result in out.

• loss = criterion:forward(out, y_i) computes the loss `(fw(xi), yi) with respect to
the true value yi

• dl_dout = criterion:backward(out, y_i) computes ∂`(··· )
∂fw(xi)

• model:backward(x_i, dl_dout) computes ∇w` and stores this gradient in a place we
have a reference to, usually called gradParameters in our code. (This is why you see no
variable assignments on this line.)

Task 2: Tuning the optimizer

Our main task is to find a configuration (learning rates, mini-batch size, line search, momentum,
etc.) and corresponding meta-parameter values for an optimizer algorithm (SGD, adagrad, or
L-BFGS) so as to minimize the number of errors on the test set.

To find out all the configuration options for the optimization algorithms you will have to read
the documentation here: https://github.com/torch/optim.

To help you, we have provided some starter configuration options for SGD. However, more
options are possible and the values provided are not necessarily optimal. With a better choice of
parameters, you will converge much faster. Additionally, you can tweak other options such as
the minibatch size.

• Modify the code so that it evaluates its performance on the test set after every minibatch
(or epoch if you prefer), then plot both the test loss and training loss on the same plot,
rather than just the training set loss as the code does now.
Handin: the plot, and a brief explanation of the code required to do this.

• Find a configuration that works well (for the optimizer and perhaps mini-batch size and
others). The classification error is the percentage of instances that are misclassified, in
either the training or test set.
Handin: Find a configuration that predicts well, and report your training set and test
set classification error as we just defined. Explain your findings about which optimizers
were easier to configure than others. Very briefly explain why the final model you pick
solution is “good”. Show your code for computing the classification error, which should be
short.
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Handin

See the bolded “Handin:” parts above.

In the source file, you can search for sections marked TODO for where you can enter your code.
At this point, however, you will have completed lectures and since you have 2 weeks for this
practical, you should have enough time to read and understand all the relevant parts of the code.

The advanced task and the introduction example are not for handin.

Advanced: For enthusiastic students (optional)

1. Implement a gradient checker that uses a finite-difference approximation to compute the
gradient ∂ criterion output

∂w (criterion output is Torch’s name for the loss function output),
then compare this to the value produced in the feval function.

2. Implement a Jacobian checker to verify the nn.Linear class computes derivatives correctly.
This Jacobian computation task will become easier once we understand the purpose of
backpropagation (next lecture).

This is the standard way people unit-test numerical code involving derivatives, both when
prototyping and when writing large software systems.

Hint: See http://en.wikipedia.org/wiki/Finite_difference#Relation_with_derivatives for de-
tails on finite-difference approximations. Think about how this extends to first-order partial
derivatives. The bottom of the Wikipedia page has some examples for partial derivatives.

Page 4

http://en.wikipedia.org/wiki/Finite_difference#Relation_with_derivatives

	Classifying digits and tuning optimizers
	Task 1: Introduction and Review
	Optional: Brief overview of backward and forward

	Task 2: Tuning the optimizer
	Handin
	Advanced: For enthusiastic students (optional)


