
Machine Learning - Michaelmas Term 2016

Lecture 7 : Classification: Generative Models

Lecturer: Varun Kanade

So far, we’ve studied the linear model for regression and some extensions. In the linear
model, the output is assumed to be a linear function of the inputs with some additional noise.
We studied probabilistic discriminative models, where the output y conditioned on the inputs
x and the model w was modelled as a probability distribution, e.g., p(y | x,w) = N (w · x, σ2).
In this lecture, we’ll study generative models for classification. In a generative model, we model
both the inputs and the output as a probability distribution, with some parameters θ, i.e., the
entire joint distribution p(x, y |θ).

1 Generative Models for Classification

Classification problems are also a form of supervised learning, where we are given data as input
and output pairs. In classification problems, the output (or target) y is a class or a category; let
us suppose that y ∈ {1, . . . , C}, where C is the number of classes. As in the case of regression,
the inputs may be of several types, such as real-valued or categorical. For regression problems,
we first converted categorical inputs to real-valued ones by some encoding scheme, such as
one-hot encoding. We can also do this for classification problems, but for now, let us leave the
categorical inputs as they are. For some types of generative models, it is possible and indeed
desriable to model categorical inputs directly, without converting them to some vector form.

Let us quickly summarise the distinction betwen a generative model and a discriminative
model. In the discriminative setting, we only model the conditional distribution of the output,
given the input and model parameters, i.e., p(y | x,θ).1 On the other hand, in the generative
framework, we model the full joint distribution p(x, y | θ). We’ll discuss a couple of different
generative models in this lecture and methods to estimate their parameters, but for now let us
first understand how predictions can be made by using a generative model.

1.1 Prediction Using a Generative Model

Let us suppose using some training data we’ve obtained an esimate for the parameters θ of our
generative model p(x, y | θ). This model represents a joint probability distribution over the
inputs and the output. Suppose we are given a new input xnew and we wish to assign a class
from {1, . . . , C} to it. Using the entire model, we can write the conditional distribution for the
output y, as follows:

For c ∈ {1, . . . , C},

p(y = c | xnew,θ) =
p(y = c | θ) · p(xnew|y = c,θ)∑C

c′=1 p(y = c′ | θ) · p(xnew | y = c′,θ)
(1)

We’ve simply applied Bayes’ Rule to get the conditional probability distribution above. The
denominator of the (1) represents the marginal distribution p(xnew | θ) of observing xnew accord-
ing to the generative model p(x, y | θ), whereas the numerator represents the joint probability
of the observation p(xnew, c|θ) according to the model. In order to predict a specific class, we

1When we talk of parameters in generality, we’ll simply use θ. Whereas when we talk about specific models,
we may use different notation depending on the model. Hopefully, this should not be a cause for confusion.
Unfortunately, there are many specific models for which the parameters are also denoted by θ in the literature,
increasing the chance of creating confusion.

1

Voted in Annual State Candidate
2012? Income Choice

Y 50K OK Clinton
N 173K CA Clinton
Y 80K NJ Trump
Y 150K WA Clinton
N 25K WV Johnson
Y 85K IL Clinton
...

...
...

...
Y 1050K NY Trump
N 35K CA Trump

Table 1: Some fake data about voters in the US presidential election along with their candidate
choice.

simply pick ŷ = argmaxc p(y = c | xnew,θ). The form of (1) suggests that we should model the
class conditional distributions, p(x | y = c,θ) for every c ∈ {1, . . . , C}.

1.2 Toy Example

Lett us introduce a running toy example to discuss generative models. Suppose we want to pre-
dict which candidate a voter will choose in the US presidential election using some demographic
information, such as whether they voted in 2012 or not, their annual income and the state where
they reside. Table 1 shows some (fake) data. And finally let us suppose that our task is for
some voter, who is supposedly undecided, to predict the candidate they will eventually vote for
using the available data.

1.3 Defining a Generative Model

In order to fit a generative model to data, we’ll express the joint distribution as follows:

p(x, y | θ,π) = p(y | π) · p(x | y,θ) (2)

Above we added an extra set of parameters π. We express the joint distribution p(x, y | θ,π)
as a product of the marginal distribution of the outputs y, parameterized using π and the class
conditional distributions of the inputs x given the class label, which we parameterise using θ.
Whenever we have a relatively small number of classes, we’ll model the marginal distribution
p(y | π) over classes, by introducing a parameter πc to denote the probability that y = c.
Clearly, we need

∑C
c=1 πc = 1. So we have the marginal distribution over p(y|π) defined as:

p(y | π) = πc (3)

We’ll return to the question of modelling the class conditional distribution over the inputs
x later. For now, let us suppose that we are given data D = 〈(xi, yi)〉Ni=1. We assume that each
data point is drawn independently from the same distribution, or i.i.d. for short. Let us write
the likelihood of the data in terms of the model parameters θ and π.

p(D | θ,π) =

N∏
i=1


 C∏
i=1

π1(yi=c)
c

 · p(xi | yi,θ)



2

Above, 1 is the indicator function, so 1(yi = c) = 1 if yi = c and 0 otherwise. As always, it is
easier to deal with the log-likelihood than the likelihood. Let Nc denote the number of input
datapoints such that yi = c. Then we have,

log p(D | θ,π) =
C∑
c=1

Nc log(πc) +
N∑
i=1

log p(xi | yi,θ) (4)

Based on the form of (4), we see that in order to estimate the parameter πc, we do not need
to worry about the exact form of the class conditional distributions p(x | y,θ), as there is no
dependence on π in the second term of the RHS of (4).

Thus, to obtain the parameters π, we can simply solve the following optimisation problem:

maximise
C∑
c=1

Nc log πc (5)

subject to :
C∑
c=1

πc = 1

This problem can be solved using the method of Lagrangean multipliers. In general, for a
constrained optimisation problem of the form:

argmax
z

f(z), subject to : g(z) = 0, (6)

the Lagrangean (dual) form is the following:

Λ(z, λ) = f(z) + λg(z) (7)

A necessary condition for z to be a solution to (6) is that it should be a stationary point of
Λ(z, λ). (For further details regarding this approach, please refer to (Bishop, 2006, Appendix
C) or a book on multivariate calculus.) Here, let us quickly see why this should be the case:
Taking the partial derivative of Λ(z, λ) with respect to λ and setting it to 0, gives us g(z) = 0.
The condition that the gradient of Λ(z, λ) with respect to z is 0, gives us that ∇zf = −λ∇zg,
i.e., the gradients with respect to f and g must be parallel. This is of course necessary, as
otherwise, it would be possible to increase f(z) while going in a direction that still maintains
g(z) = 0.

Applying this to our optimization problem (5), we write the Lagrangean form:

Λ(π, λ) =

C∑
c=1

Nc log πc + λ(

C∑
c=1

πc − 1) (8)

Taking the derivative with respect to each πc and λ and setting them to 0, we get:

∂Λ(π,λ)
∂πc

=
Nc

πc
+ λ = 0 (9)

∂Λ(π,λ)
∂λ =

C∑
c=1

πc − 1 = 0 (10)

Using (9), we see that it must be that πc = −Nc
λ for each c and (10) shows that the value of

λ is given by −
∑

cNc = −N . Thus, we get the very reasonably estimate that πc = Nc
N .

Thus, we have seen that for generative models, we can simply use the empirical distribution
over the classes as the marginal distribution p(y | π). Thus, the main part of the models is
choosing a suitable model for the class conditional distributions, p(x | y,θ), and estimating the
required parameters.

3

2 Näıve Bayes Classifier (NBC)

Let us now return to the question of modelling the class conditional distribution on the inputs
given the class label, p(x | y = c,θc). For each class c = 1, . . . , C, we’ll use a set of parameter
θc to model this distribution.2 Typically, x is high-dimensional, i.e., the number of features D
is quite large. Thus, if we assigned a probability to every possible combination of features, we
would require at a minimum exponential in D parameters. There is the additional problem that
some of these features may be real-valued, e.g., annual income. Thus, we need to make some
simplifying assumption in order to have a model with a reasonable number of parameters.3

In the Näıve Bayes Classifier, it is assumed that the features are conditionally independent
given the class label. So in our toy example, we’re assuming that given that someone is a Trump
voter, their income, the state where they live and whether they voted in 2012 are conditionally
independent!4 Clearly, this is far too simplistic an assumption, which will never hold in practice.
Nevertheless, these classifiers do exhibit surprisingly good results in practice!

Let us now define the model p(x | y = c, θc) in the Näıve Bayes Classifier:

p(x | y = c,θc) =

D∏
j=1

p(xj | y = c,θjc) (11)

Because of the conditional independence assumption, the probability distribution p(x | y =
c,θc) factorises into D terms, one for each feature. The same is the case with the overall
log-likelihood from (4), which we can in the case of the NBC write as:

log p(D | θ,π) =

C∑
c=1

Nc log πc +

C∑
c=1

D∑
j=1

∑
i:yi=c

log p(xij | θjc) (12)

In order to fit the parameters θjc, we only need to use datapoints where yi = c and only the
jth feature of those datapoints. Depending on the type of feature, we may use a different model
for the individual feature and hence a different estimation procedure.

• If xj ∈ R, e.g., annual income, we can use a Gaussian model for xj . The parameters θjc
in this instance are simply the mean and variance, θjc = (µjc, σ

2
jc). (Exercise: Show that

the maximum likelihood estimates are given by the empirical mean and variance.) There
is no specific reason to use a Gaussian distribution; we could equally well have chosen a
Laplace distribution or any other. The maximum likelihood estimating procedure depends
on the choice of distribution, but because we are solving a one-dimensional problem, this
is usually quite easy.

• If xj is categorical, taking one of K values, {1, . . . ,K}, we may use what Murphy (2012)
calls the mulitnoulli distribution. Essentially, there is a probability µjc,l associated with

each of the K possible categories, so that
∑K

l=1 µjc,l = 1. And the model is simply,
p(xj = l | y = c,µjc) = µjc,l. We’ve already seen how to obtain the maximum likelihood
estimates for this distribution, when we obtained estimates for πc. The estimate for µjc,l
is given by the number of datapoints where yi = c and xij = l and dividing by the number
of datapoints where yi = c.

2In this section, we’ll assume that the θc are all distinct for c = 1, . . . , C. Later, we’ll make the case for
sharing some of the parameters between the different classes.

3Note that having too many parameters is a problem both for statistical (overfitting) and computational
(memory and time) reasons.

4This is very different from assuming that the features are independent. The features are indeed dependent,
but what this assumption states is that this dependence comes solely from the label, i.e., in this case who they
are voting for. Once we have conditioned on this, the features become conditionally independent.

4

• If xj is binary, i.e., taking values in {0, 1}, this is just a special case of the above. In this
case, we can use a Bernoulli distribution with just a single parameter θjc ∈ [0, 1].

Of course, other distributions can be selected. One of the advantages of using a Näıve Bayes
classifier is that it allows us to mix and match feature types rather easily, e.g., there is no need
to convert categorical variables to vector form. The model fitting algorithm is very easy as each
feature is treated separately.

Discussion

Let us remind ourselves that our final goal is classification and not necessarily to build model
of the data. Modelling the data using a generative model is ultimately only a tool to build a
classifier.5 Thus, even though the conditional independence assumption is too näıve and unlikely
to ever hold, it may still be the case that the resulting classifiers have quite good performance;
indeed, this is the observation in practice. The advantages of this simplification are both data
and computational efficiency. Let us suppose that all our features are binary. If we tried to
model an arbitrary joint distribution over {0, 1}D, then we would require 2D parameters. Given
that we have C classes, the total number of parameters in the model is C · 2D. Even though
a model this general is able to fit any distribution on the data, it will invariably overfit on
the available data. Unless of course the amount of data we have is � 2D, in which there is
prohibitive computational cost. On the other hand, the Näıve Bayes classifier only has O(C ·D)
parameters (in the case where all features are binary). Thus, it is very unlikely to overfit as
long as we have a reasonable amount of data. This is yet another manifestation of the principle
that a simpler model may have more predictive power given that we have limited amounts of
data.

3 Gaussian Discriminant Analysis

Let us now study a different type of generative model. We use the same form for the joint
distribution as in (2):

p(x, y | θ,π) = p(y | π) · p(x | y,θ) (13)

As described in Section 1.3, we will continue to represent the marginal distribution p(y | π) as,
p(y = c | π) = πc, thus the estimates πc = Nc/N , where Nc is the number of datapoints with
yi = c. The difference is in the manner in which we model the class-conditional densities. Let
us suppose that all the features are real-valued, then we can model the inputs x given the class
label y = c as being generated from a multivariate Gaussian distribution with mean µc and
covariance matrix Σc. Formally,

p(x | y = c,θc = (µc,Σc)) = N (x | µc,Σc) (14)

3.1 Estimating the parameters µc and Σc

As in the case of the Näıve Bayes model, we can write the log likelihood for the data and then
estimate the parameters µc and Σc for the model. The calculations involved require manipu-
lating matrix expressions, including determinants. We’ll omit the calculations; the interested

5It is possible that building a generative model for the data is a goal in itself. This is usually more common
in the unsupervised setting, where we want to a build a model that produces new data that “looks” like the data
we have at our disposal.

5

student should refer to (Murphy, 2012, Section 4.1). We’ll simply state the maximum likelihood
estimates here:

µ̂c =
1

Nc

∑
i:yi=c

xi

Σ̂c =
1

Nc

∑
i:yi=c

(xi − µ̂c)(xi − µ̂c)
T

3.2 Quadratic Discriminant Analysis

Let us now consider the prediction rule using the Gaussian model. Recall the prediction rule
for generative models given by (1):

p(y = c | xnew,θ) =
p(y = c | θ) · p(xnew|y = c,θ)∑C

c′=1 p(y = c′ | θ) · p(xnew | y = c′,θ)
(15)

When the densities are multivariate Gaussian, the above expression takes the following form
(where we’ve dropped the subscript on xnew for notational convenience):

p(y = c | x,θ) =
πc|2πΣc|−

1
2 exp

(
−1

2(x− µc)
TΣ−1

c (x− µc)
)

∑C
c′=1 πc′ |2πΣc′ |−

1
2 exp

(
−1

2(x− µc′)
TΣ−1

c′ (x− µc′)
) (16)

The decision boundary between two classes c and c′ will be given by x that satisfy, p(y =
c | x,θ) = p(y = c′ | x,θ), or alternatively when their ratio is 1. This is given by:

πc|2πΣc|−
1
2 exp

(
−1

2(x− µc)
TΣ−1

c (x− µc)
)

πc′ |2πΣc′ |−
1
2 exp

(
−1

2(x− µc′)
TΣ−1

c′ (x− µc′)
) = 1

exp

(
1

2

(
(x− µc′)

TΣ−1
c′ (x− µc′)− (x− µc)

TΣ−1
c (x− µc)

))
=
πc′ |2πΣc′ |−

1
2

πc|2πΣc|−
1
2

1

2

(
(x− µc′)

TΣ−1
c′ (x− µc′)− (x− µc)

TΣ−1
c (x− µc)

)
= log

(
πc′ |2πΣc′ |−

1
2

πc|2πΣc|−
1
2

)
(17)

Equation (17) shows that the decision boundaries are given by quadratic curves, it is for this
reason that this is called as quadratic discriminant analysis. Note that not every point satisfy-
ing (17) lies on the decision boundary between the classes c and c′; when there are more than
two classes, there may be some third class c̃ which has a higher value of p(y = c̃ | x,θ) for some
or all of the x satisfying (17). The boundaries between classes are therefore given by piecewise
quadratic curves. Figure 1(a) shows the decision boundary when there are only two classes.

3.3 Linear Discriminant Analysis

A special case is when the model assumes that the covariance matrix is the same for all the
classes; however, the means are obviously disctinct in each case. This is referred to as weight
typing or parameter sharing.

Let us write the probability that y = c for some new datapoint x in this cse:

p(y = c | x,θ) ∝ πc exp

(
−1

2
(x− µc)

TΣ−1(x− µc)

)
(18)

= exp

(
µT
c Σ−1x− 1

2
µT
c Σ−1µc + log πc

)
· exp

(
−1

2
xTΣ−1x

)
(19)

6

(a) (b)

Figure 1: Class boundaries for (a) QDA and (b) LDA

Above we’ve replaced an equality by proportionality in (16). The demonimator of (16) does

not depend on the specific class c and the term |2πΣc|−
1
2 can be dropped as we are using the

same Σc = Σ for all the classes. Note that the last term ofthe RHS of (19) does not depend
on the any class c, so in this case the class boundaries are actually linear, hence the name (see
Fig. 1(b)). If we let,

γc = −1

2
µT
c Σ−1µc + log πc, βc = Σ−1µc

we can rewrite (19) as:

p(y = c | xnew,θ) ∝ exp
(
βT
c x + γc

)
(20)

And hence,

p(y = c | x,θ) =
exp

(
βT
c x + γc

)
∑

c′ exp
(
βT
c′x + γc′

) =: softmax(η)c (21)

where, η = [βT
1 x + γ1, · · · ,βT

Cx + γC].

Softmax

Softmax maps a set of numbers to a probability distribution with mode at the maximum.
Because of the exponentiation, it is invariant to translation of the numbers, but not to scaling.
Two examples are included below to clarify this point.

softmax([1, 2, 3]) ≈ [0.090, 0.245, 0.665]

softmax([10, 20, 30]) ≈ [2× 10−9, 4× 10−5, 1]

7

−4 −2 0 2 4
0

0.5

1

t

Figure 2: The sigmoid function.

3.3.1 Two-Class LDA

In the special case, where there are only two classes, we get a particularly simple form. Let us
refer to these two classes as 0 and 1.

p(y = 1 | x, θ) =
exp

(
βT

1 x + γ1

)
exp

(
βT

1 x + γ1

)
+ exp

(
βT

0 x + γ0

)
=

1

1 + exp
(
−((β1 − β0)Tx + (γ1 − γ0))

)
=: sigmoid((β1 − β0)Tx + (γ1 − γ0))

Sigmoid Function

The sigmoid function is defined as:

sigmoid(t) =
1

1 + e−t

The sigmoid function is monontone and maps every real number to a number between 0 and
1; hence it is useful as a means to map arbitrary functions to probabilities. The shape of the
sigmoid is shown in Figure 2.

3.4 Discussion

The Gaussian discriminant analysis is another generative model, which may be more suitable to
model data in certain cases. For example, if the classes are zebras and giraffes and measurements
are height and weight of the animals, then a Gaussian distribution may be better-suited to model
the class conditional distributions than the Näıve Bayes approach (clearly height and weight
are not conditionally independent given the type of animal).

However, when using these models in high dimensions there may be some concern of over-
fitting. The number of parameters grows as roughly C ·D2 for C classes and D features. Some
approaches to reduce overfitting are (i) using a diagonal covariance matrix (this is equivalent
to Näıve Bayes), (ii) using the same covariance matrix for all classes (LDA). The Bayesian
approach of using priors on the parameters can also reduce overfitting, however, we will not
cover this in the course.

The name ‘discriminant’ is a bit unfortunate in this context. These are generative mod-
els, not discriminative ones. The term simply refers to the shapes of the boundaries that
discriminate between the classes when using these models. In the next lecture, we will study
discriminative models for classification.

References

Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

8

Kevin P. Murphy. Machine Learning : A Probabilistic Perspective. MIT Press, 2012.

9

