
Machine Learning - MT 2016

13 & 14. PCA and MDS

Varun Kanade

University of Oxford
November 21 & 23, 2016



Announcements

I Sheet 4 due this Friday by noon

I Practical 3 this week (continue next week if necessary)

I Revision Class for M.Sc. + D.Phil. Thu Week 9 (2pm & 3pm)

I Work through ML HT2016 Exam (Problem 3 is optional)

1



Supervised Learning: Summary

I Training data is of the form 〈(xi, yi)〉where xi are features and yi is target

I We formulate a model: generative or discriminative

I Choose a suitable training criterion (loss function, maximum likelihood)

I Use optimisation procedure to learn parameters

I Use regularization or other techniques to reduce overfitting

I Use trained classifier to predict targets/labels on unseen xnew

2



Unsupervised Learning

Training data is of the form x1, . . . ,xN

Infer properties about the data

I Search: Identify patterns in data

I Density Estimation: Learn the underlying distribution generating data

I Clustering: Group similar points together

I Today: Dimensionality Reduction

3



Outline

Today, we’ll study a technique for dimensionality reduction

I Principal Component Analysis (PCA) identifies a small number of
directions which explain most variation in the data

I PCA can be kernelised

I Dimensionality reduction is important both for visualising and as a
preprocessing step before applying other (typically unsupervised)
learning algorithms

4



Principal Component Analysis (PCA)

5



Principal Component Analysis (PCA)

5



Principal Component Analysis (PCA)

5



Principal Component Analysis (PCA)

5



Principal Component Analysis (PCA)

5



PCA: Maximum Variance View

PCA is a linear dimensionality reduction technique

Find the directions of maximum variance in the data 〈(xi)〉Ni=1

Assume that data is centered, i.e.,
∑

i xi = 0

Find a set of orthogonal vectors v1, . . . ,vk

I The first principal component (PC) v1 is the direction of largest
variance

I The second PC v2 is the direction of largest variance orthogonal to v1

I The ith PC vi is the direction of largest variance orthogonal to
v1, . . . ,vi−1

VD×k gives projection

zi = VTxi for datapoint xi

Z = XV for entire dataset

6



PCA: Maximum Variance View

We are given i.i.d. data 〈(xi)〉Ni=1; data matrix X

Want to find v1 ∈ RD , ‖v1‖ = 1, that maximizes ‖Xv1‖2

Let z = Xv1, so zi = xi · v1.

We wish to find v1 so that
∑N

i=1 z
2
i is maximised.

N∑
i=1

z2i = zTz

= vT
1XTXv1

The maximum value attained by vT
1XTXv1 for ‖v1‖ = 1 is the largest

eigenvalue of XTX.

The argmax is the corresponding eigenvector v1.

Find v2,v3, . . . ,vk that are all successively orthogonal to previous
directions and maximise (as yet unexplained variance)

7



PCA: Best Reconstruction

We have i.i.d. data 〈(xi)〉Ni=1; data matrix X

Find a k-dimensional linear projection that best represents the data

Suppose Vk ∈ RD×k is such that columns of Vk are orthogonal

Project data X on to subspace defined by V

Z = XVk

Minimize reconstruction error

N∑
i=1

‖xi −VkVT
kxi‖2

8



Principal Component Analysis (PCA)

9



Equivalence between the Two Objectives: One PC Case

Let v1 be the direction of projection

The point x is mapped to x̃ = (v1 · x)v1, where ‖v1‖ = 1

Maximum Variance

Find v1 that maximises
∑N

i=1(v1 · xi)
2

Best Reconstruction

Find v1 that minimises:

N∑
i=1

‖xi − x̃i‖2 =
N∑
i=1

(
‖xi‖2 − 2(xi · x̃i) + ‖x̃i‖2

)
=

N∑
i=1

(
‖xi‖2 − 2(v1 · xi)

2 + (v1 · xi)
2‖v1‖2

)
=

N∑
i=1

‖xi‖2 −
N∑
i=1

(v1 · xi)
2

So the same v1 satisfies the two objectives

10



Finding Principal Components: SVD

Let X be theN ×D data matrix

Pair of singular vectors u ∈ RN , v ∈ RD and singular value σ ∈ R+ if

σu = Xv and σv = XTu

v is an eigenvector of XTX with eigenvalue σ2

u is an eigenvector of XXT with eigenvalue σ2

11



Finding Principal Components: SVD

X = UΣVT (sayN > D)

Thin SVD: U isN ×D, Σ isD ×D, V isD ×D, UTU = VTV = ID

Σ is diagonal with σ1 ≥ σ2 ≥ · · · ≥ σD ≥ 0

The first k principal components are first k columns of V

Full SVD: U isN ×N , Σ = N ×D, V isD ×D. V and U are orthonormal
matrices

12



Algorithm for finding PCs (when N > D)
Constructing the matrix XTX takes timeO(D2N)

Eigenvectors of XTX can be computed in timeO(D3)

Iterative methods to get top k singular (right) vectors directly:

I Initiate v0 to be random unit norm vector

I Iterative Update:

I vt+1 = XTXvt

I vt+1 = vt+1/‖vt+1‖
until (approximate) convergence

I Update step only takes O(ND) time (compute Xvt first, then
XT(Xvt))

I This gives the singular vector corresponding to the largest
singular value

I Subsequent singular vectors obtained by choosing v0 orthog-
onal to previously identified singular vectors (this needs to be
done at each iteration to avoid numerical errors creeping in)

13



Algorithm for finding PCs (when D� N)

Constructing the matrix XXT takes timeO(N2D)

Eigenvectors of XXT can be computed in timeO(N3)

The eigenvectors give the ‘left’ singular vectors, ui of X

To obtain vi, we use the fact that vi = σ−1XTui

Iterative method can be used directly as in the case whenN > D

14



PCA: Reconstruction Error

We have thin SVD: X = UΣVT

Let Vk be the matrix containing first k columns of V

Projection on to k PCs: Z = XVk = UkΣk, where Uk is the matrix of the
first k columns of U and Σk is the k × k diagonal submatrix for Σ of the
top k singular values

Reconstruction: X̃ = ZVT
k = UkΣkVT

k

Reconstruction error=
N∑
i=1

‖xi −VkVT
kxi‖2 =

D∑
j=k+1

σ2
j

This follows from the following calculations:

X = UΣVT =

D∑
j=1

σjujv
T
j X̃ = UkΣkVT

k =

k∑
j=1

σjujv
T
j

‖X− X̃‖F =

D∑
j=k+1

σ2
j

15



Reconstruction of an Image using PCA

16



Howmany principal components to pick?

Look for an ‘elbow’ in the curve of reconstruction error vs # PCs

17



Application: Eigenfaces

A popular application of PCA for face detection and recognition is known as
Eigenfaces

I Face detection: Identify faces in a given image

I Face Recognition: Classification (or search) problem to identify a
certain person

18



Application: Eigenfaces

PCA on a dataset of face images. Each principal component can be thought
of as being an ‘element’ of a face.

Source: http://vismod.media.mit.edu/vismod/demos/facerec/basic.html

19

http://vismod.media.mit.edu/vismod/demos/facerec/basic.html


Application: Eigenfaces

Detection: Each patch of the image can be checked to identify whether there
is a face in it

Recognition: Map all faces in terms of their principal components. Then use
some distance measure on the projections to find faces that are most like
the input image.

Why use PCA for face detection?

I Even though images can be large, we can use theD � N approach to
be efficient

I The final model (the PCs) can be quite compact, can fit on cameras,
phones

I Works very well given the simplicity of the model

20



Application: Latent Semantic Analysis

X is anN ×D matrix,D is the size of dictionary

xi is a vector of word counts (bag of words)

Reconstruction using k eigenvectors X ≈ ZVT
k , where Z = XVk

〈zi, zj〉 is probably a better notion of similarity than 〈xi,xj〉

X Z

VT
k

≈

×

Non-negative matrix factorisation has more natural interpretation, but is
harder to compute

21



PCA: Beyond Linearity

22



PCA: Beyond Linearity

22



PCA: Beyond Linearity

22



PCA: Beyond Linearity

22



Projection: Linear PCA

23



Projection: Kernel PCA

24



Kernel PCA

Suppose our original data is, for example, x ∈ R2

We could perform degree 2 polynomial basis expansion as:

φ(x) =
[
1,
√
2x1,
√
2x2, x

2
1, x

2
2,
√
2x1x2

]T
Recall that we can compute the inner products φ(x) · φ(x′) efficiently
using the kernel trick

φ(x) · φ(x′) = 1 + 2x1x
′
1 + 2x2x

′
2 + x21(x

′
1)

2 + x22(x
′
2)

2 + 2x1x2x
′
1x
′
2

= (1 + x1x2 + x′1x
′
2)

2 = (1 + x · x′)2 =: κ(x,x′)

25



Kernel PCA

Suppose we use the feature map: φ : RD → RM

Let φ(X) be theN ×M matrix

We want find the singular vectors of φ(X) (eigenvectors of φ(X)Tφ(X))

However, in generalM � N (in factM could be infinite for some kernels)

Instead we’ll find the eigenvectors of φ(X)φ(X)T, the kernel matrix

26



Kernel PCA

Recall that the kernel matrix is:

K = φ(X)φ(X)T =


κ(x1,x1) κ(x1,x2) · · · κ(x1,xN )
κ(x2,x1) κ(x2,x2) · · · κ(x2,xN )

...
...

. . .
...

κ(xN ,x1) κ(xN ,x2) · · · κ(xN ,xN )


Let u ∈ RN be an eigenvector of K, (left singular vector of φ(X))

The corresponding principal component v ∈ RM is σ−1φ(X)Tu

We won’t express v explicitly, instead we can compute projections of a
new datapoint xnew on to the principal component v using the kernel
function:

φ(xnew)
Tv = σ−1φ(xnew)

Tφ(X)Tu = σ−1[κ(xnew,x1), κ(xnew,x2), · · · , κ(xnew,xN )]u

So in order to compute projections onto principal components we do not
need to store the principal components explicitly!

27



Kernel PCA

For PCA, we assumed that the datamatrix X is centered, i.e.,
∑

i xi = 0

However, this is not the case for the matrix φ(X)

Instead we can consider:

φ̃(xi) = φ(xi)−
1

N

N∑
k=1

φ(xk)

The corresponding matrix K̃ is given by the entries

K̃ij = κ(xi,xj)−
1

N

N∑
l=1

κ(xi,xl)−
1

N

N∑
l=1

κ(xj ,xl) +
1

N2

N∑
k=1

N∑
l=1

κ(xl,xk)

Succintly, if O is the matrix of all with every entry 1/N , i.e., O = 11T/N

K̃ = K−OK−KO + OKO

To perform kernel PCA, we need to find the eigenvectors of K̃

28



Projection: PCA vs Kernel PCA

29



Kernel PCA Applications

I Kernel PCA is not necessarily very useful for visualisation

I Also, kernel PCA does not directly give a useful way to construct a
low-dimensional reconstruction of the original data

I Most powerful uses of kernel PCA are in other machine learning
applications

I After kernel PCA preprocessing, we may get higher accuracy for
classification, clustering, etc.

30



PCA Summary

Algorithm: We’ve expressed PCA as SVD of data matrix X

Equivalently, we can use eigendecomposition of the matrix XTX

Running Time:O(NDk) to compute k principal components (avoid
computing the matrix XTX)

PCs are uncorrelated, but there may be non-linear (higher-order) effects

PCA depends on scale or units of measurement; it may be a good idea to
standardize data

PCA is sensitive to outliers

PCA can be kernelised: Useful as preprocessing for further ML
applications, rather than visualisation

31


