
Machine Learning - Michaelmas Term 2017

Lecture 3 : Linear Regression

Lecturers: Christoph Haase & Varun Kanade

Linear regression is one of the central methods in supervised machine learning and statis-
tics. This method goes back at least to Legendre and Gauss who applied it to astronomical
observations. Incidentally, the word ‘regression’ in this context seems to have first appeared in
the work of Galton (1886). Although the basic model assumes a linear relationship between the
input and the output, by performing basis function expansion it can be used to model non-linear
relationships as well, something that we will study in the next few lectures.

As the linear regression framework is relatively easy to describe and in the most basic setting
closed form expressions can be obtained, it serves as a useful tool to introduce many key notions
in machine learning.

1 Linear Model

Let us suppose that our datapoints are vectors x ∈ RD and the output (the value to be predicted)
is y ∈ R. For the purpose of training, we are given N observations, 〈(xi, yi)〉Ni=1. We will assume
that all vectors are column vectors.

A linear model assumes that y can be expressed (approximately) as a linear (or affine)
function of the input x. Thus, we may express,

y = w0 + x1w1 + · · ·+ xDwD + ε. (1)

Here w0 is the constant term (also called bias or intercept) which does not depend on the input
at all. The term ε models noise or uncertainty—the fact that we don’t expect the observed data
to be exactly captured by a linear relationship.

2 A Toy Example

Throughout this lecture, we will make use of a toy problem of predicting commute time using
simple features. For a few different individuals, we are given the distance they need to travel
and the day of the week, along with the observed time their commute took. This (fake) data is
summarised in Table 1.

dist (km) day commute time (min)

2.7 fri 25
4.1 mon 33
1.0 sun 15
5.2 tue 45
2.8 sat 22

Table 1: Distance travelled, day of week and commute time.

The inputs in this instance are distance and day of the week. In order to apply a math-
ematical model, we first need to project them in RD for some D. Distance already takes a
numerical value, so this is straightforward. For days of the week, one might at first glance think
of encoding them as integers {0, 1, 2, . . . , 6}. However, this imposes an unnatural and untrue
mathematical structure on the data which may only serve to confuse the model that we wish

1



to train. A better encoding would be to use seven binary attributes, one for each day, say xmon

for monday, which takes the value 1 if the day indeed were monday and 0 otherwise. This is
referred to as one-hot encoding, a term that refers to the fact that exactly one of the seven
variables will be 1 for a given datapoint.

For now, we will make the (reasonable?) simplifying assumption that the commute time is
only affected by whether it is a weekday or the weekend, and use a single binary variable that
takes value 1 for a weekday and 0 for the weekend. Thus, our data can be expressed as x ∈ R2,
where x1 is the distance and x2 denotes whether or not the day is a weekday.

Thus, the linear model for this problem is given by:

y = w0 + w1x1 + w2x2 + ε

For technical convenience, we will sometimes assume that there is an extra input column in
Table 1, where every entry is 1. Thus, x = (x0, x1, x2) ∈ R3, where x0 = 1 for every possible
input. This way we don’t have to treat the constant term w0 separately and the linear model
can be more succinctly expressed as y = w ·x+ε, where w ·x is the scalar (dot) product between
the vectors w and x. This means that the data is now treated as being (D + 1)-dimensional.

Note: Sometimes we’ll just refer to D+ 1 as D. Whether the bias term is folded into the input
or not should be clear from context.

3 Least Squares Estimate

When it comes to learning the linear model, the parameters that need to be estimated are
w0, w1, . . . , wD. Thus, during the training (or learning, or estimation) phase, we process
the input data using a learning algorithm that outputs an estimate of the parameters w =
(w0, . . . , wD). When actually using the model, we will only be given a new input, say xnew, and
we use the model to predict. The prediction is given by ŷnew = w ·xnew. In order to understand
whether or not the learned model does well on new data, it is usually a good idea to keep aside
some data that we don’t supply to the training algorithm, and use this to test the performance
of the model. We’ll return to the issue of testing the quality of models in the coming weeks.

3.1 Least Squares Estimate in One Dimension

Let us start with the most simple of cases, where the input itself is one-dimensional. Thus, the
data we have is 〈(xi, yi)〉Ni=1. Let ŷ(x) = w0 + w1 · x denote the prediction of the linear model
(without the noise term). Then the least squares estimate looks for w0, w1 that minimise the
following function.

L(w0, w1) =
1

2N

N∑
i=1

(ŷi − yi)2 =
1

2N

N∑
i=1

(w0 + xi · w1 − yi)2 (2)

The function L is called the loss function; it is often also referred to as the cost function,
objective function, or energy function. Geometrically, we can view this as looking for a line such
that when the actual observation points are projected onto the line using vertical lines, the sum
of the squares of these projected segments is minimised. The length of these line segements is
the absolute value of the difference between the prediction according to the model (line) and
the observation, referred to as the residual. For this reason, this objective is referred to as the
residual sum of squares. The estimate (w0, w1) that minimises this objective is called the least
squares estimate. (See Figure 1).

2



Figure 1: Figure showing least square fit to data in Table 1 along with residuals.

In order to find the least square estimate analytically, we can minimise L(w0, w1) given
by (2). We obtain the partial derivatives as follows:

∂L
∂w0

=
1

N

N∑
i=1

(w0 + w1 · xi − yi)

∂L
∂w1

=
1

N

N∑
i=1

(w0 + w1 · xi − yi)xi

We obtain the solution for (w0, w1) by setting the partial derivatives to 0 and solving the
resulting system. The equations defining this sytem are called the normal equations.

w0 + w1 ·
∑

i xi
N

=

∑
i yi
N

(3)

w0 ·
∑

i xi
N

+ w1 ·
∑

i x
2
i

N
=

∑
i xiyi
N

(4)

The system of equations given by (3) and (4) is fairly straightforward to solve. However,
we can look at the empirical distribution on the data, i.e., each point (xi, yi) appears with
probability 1

N , and define the following statistical quantities:

x =

∑
i xi
N

y =

∑
i yi
N

v̂ar(x) =

∑
i x

2
i

N
− x2 ĉov(x, y) =

∑
i xiyi
N

− x · y

Then, the least squares estimate (w0, w1) is given by:

w1 =
ĉov(x, y)

v̂ar(x)
w0 = y − w1 · x (5)

3



Figure 2: Loss Function for Least Squares

3.2 Least Squares Estimate in the General Case

We now consider the case when the data may be in D dimensions. Consider the prediction
made by the linear model as governed by:

ŷi =

D∑
j=0

xijwj ,

where we use the convention that xij denotes the jth feature of the datapoint xi and that xi0 = 1
for all examples, so that the constant term w0 does not have to be treated separately.

It will be convenient to express everything in matrix notation. Let X denote an N × (D+1)
matrix whose ith row is the datapoint xT

i (transposed), ŷ is a column vector whose ith entry is
ŷi and w is the vector of parameters to be learnt. We can express these in matrix form as,

ŷN×1
ŷ1
ŷ2
...
ŷN

 =

XN×(D+1)
xT
1

xT
2
...

xT
N



w(D+1)×1
w0
...
wD

 =

XN×(D+1)
x10 · · · x1D
x20 · · · x2D

...
. . .

...
xN0 · · · xND



w(D+1)×1
w0
...
wD



More succinctly, we write ŷ = Xw. The loss function L(w) can also be expressed in matrix
form. We have,

L(w) =
1

2N

N∑
i=1

(xT
i w − yi)2 =

1

2N
(Xw − y)T (Xw − y)

=
1

2N

(
wT

(
XTX

)
w −wTXTy − yTXw + yTy

)
=

1

2N

(
wT

(
XTX

)
w − 2 · yTXw + yTy

)
(6)

In the last step above, we used the fact that wTXTy = yTXw since they are both scalars and
transposes of each other. We could expand out the loss function, which results in a quadratic

4



function in w0, . . . , wD (see Fig. 2) and meticulously calculate every partial derivative. However,
since we’ll have to do this often in machine learning, it is beneficial to develop tricks to differ-
entiate matrix expressions directly. This is not a new kind of calculus, just tricks to simplify
calculations in the standard multivariate calculus.

We need to remember two simple rules, one for linear form expressions and one for quadratic
form expressions. We derive both of them here

(i) Linear Form Expressions: ∇w

(
cTw

)
= c

cTw =
D∑
j=0

cjwj

∂(cTw)
∂wj

= cj , (7)

∇w

(
cTw

)
= c (8)

(ii) Quadratic Form Expressions: ∇w

(
wTAw

)
= Aw + ATw ( = 2Aw for symmetric A)

wTAw =

D∑
i=0

D∑
j=0

wiwjAij

∂(wTAw)
∂wk

=
D∑
i=0

wiAik +
D∑
j=0

Akjwj = AT
[:,k]w + A[k,:]w

∇w

(
wTAw

)
= ATw + Aw (9)

Above we use python notation, where A[:,k] refers to the kth column of A and A[k,:] refers

to the kth row of A. We can now apply rules (8) and (9) to the loss function in (6) to obtain
the gradient as follows:

∇wL =
1

N

((
XTX

)
w −XTy

)
By setting ∇wL = 0 and solving we get,(

XTX
)
w = XTy

w =
(
XTX

)−1
XTy (Assuming inverse exists) (10)

The predictions made by the model on the data X are given by

ŷ = Xw = X
(
XTX

)−1
XTy (11)

For this reason the matrix X
(
XTX

)−1
XT is called the “hat” matrix—it puts a hat on y.

Discussion on the Least Squares Estimate

In order to derive the least square estimate, we required that XTX be invertible. It is worth
pondering when one might expect this to be the case. Observe that XTX is a (D+ 1)× (D+ 1)

5



Figure 3: Least Squares Estimate is not robust to outliers.

matrix, whereas X is N × (D + 1). Assuming that the number of features D is significantly
smaller than the number of datapoints N , we could expect X to have rank D+ 1, thus making
XTX invertible. Of course, if there is any linear dependence among the columns of X this will
not be the case. In general, we don’t expect perfect linear dependence between observed features.
However, note that this may happen as an artifact of our constructions. For example, if we did
use one-hot encoding for the days of the week using seven binary variables, xmon, . . . , xsun. Then,
we know that exactly one of them must be 1 and so xmon + · · ·+ xsun = 1. This inadvertently
introduces linear dependence in the columns of X. One solution, would be to just drop one
of the seven days, say sunday, and assume sunday corresponds to the case when the variables
corresponding to all of the other days are 0.

Of course, the problem becomes much more pronounced when the number of datapoints is
significantly smaller than the number of features. We’ll discuss what to do in this case in the
next couple of lectures.

Finally, if there are outliers in the data then the least squares estimate can be quite poor.
This is because a penatly is placed on the square of the residual, |ŷi − yi|. Figure 3 shows the
difference between the least square fit with and without the outlier (blue and green lines). Of
course, when the data is not so simple, it is hard to figure out which points may be outliers.
Rather than removing outliers, an alternative approach is to use only the sum of the residues,
i.e.,

∑N
i=1 |ŷi − yi| as the loss. This reduces the penalty placed on the outliers. The resulting

line is shown in Fig 3 using the red line. Unfortunately, there is no simple closed form solution
for this problem. We will discuss how to solve this later in the course.

4 Goal, Model and Algorithm

Goal. Having gone through the mathematics of deriving the least squares estimate, let’s revisit
the toy problem of predicting commute time. Throughout, we’ve been assuming that our goal is
simply to predict the commute time. However, in reality we may also wish to make suggestions
to users to change their behaviour. If there were many more features available, we may want to
make suggestions such as use the bus instead of driving, or travel at a specific time, etc. The
choice of model will typically depend on the intended goal of the machine learning application. If
one only wishes to make predictions, it might be worth using an extremely complicated model

6



that is highly accurate. If on the other hand, there is some interpretation required, it may
make more sense to compromise a bit on the accuracy in order to obtain a model that can be
understood by human experts. This may be quite common in domains such as biology, finance,
etc. In fact, for some financial applications, regulations require being able to explain how the
decision was arrived at even if automatic methods were used!1

Model. In this lecture, we used was the linear model (1), which assumes a linear relationship
between inputs and output. The choice of loss function is also made as a modelling assumption.
We focused on deriving the least squares estimate that minimises the residual sum of squares,
where the residual is the difference between the prediction made by the model and the actual
observation. We briefly mentioned how other choices of loss function may be applicable if the
data has outliers.

The approach studied in this lecture can be viewed as a purely “optimisation approach” to
machine learning. We try to fit a model according to a (somewhat sensible) loss function and
want the resulting optimisation problem to be tractable. In particular, we assumed there was
a noise term, as we don’t expect the data to satisfy a perfect linear relationship, but we did
not attempt to model the noise. A probabilistic view of machine learning will try to model the
noise explicitly as uncertainty introduced while making the observations; this is a topic for the
next few lectures.

Algorithm. For the least squares estimate, the algorithm is particularly simple as a closed
form expression for the estimator can be derived. The algorithm simply involves elementary
matrix operations. In particular, it is easy to see that the algorithm can be implemented in
time O(D2N) assuming that D < N . When closed form solutions are not available, more
sophisticated algorithms will have to be used.

References

Francis Galton. Regression towards mediocrity in hereditary stature. The Journal of the An-
thropological Institute of Great Britain and Ireland, 15:246–263, 1886.

1https://www.linkedin.com/pulse/machine-learning-finance-25-years-robert-hillman

7


