
Machine Learning - Michaelmas Term 2017

Lecture 6 : Regularization, Validation, Model Selection

Lecturers: Christoph Haase & Varun Kanade

1 Regularization

Let us now consider a few approaches to reducing overfitting. Of course, one approach is to
reduce the number of features used in the model, which in turn reduces the number of model
parameters and hence overfitting. However, this is somewhat less satisfying as this might leave
our models unable to capture interesting relationships in the data. For example, it is not possible
to know a priori which higher-degree monomials may be important when using polynomial basis
expansion. Thus, we add all terms up to a certain degree.

However, as discussed in the previous lecture, having a large number of (possibly irrelevant)
features makes the learning algorithms attempt to fit noise. What we would like is a penalty
to be imposed for putting weights on features that contribute little to predicting the signal.
However, we don’t know which features are irrelevant, and so we add a weight penalty for
every feature. The optimization objective is now a combination of the loss and penalty term;
the optimization procedure has to balance the tradeoff between minimizing the loss and the
penalty.

1.1 Ridge Regression

In ridge regression, we use the least squares objective and add a penalty on the sum of the
squares of the weight parameters. For λ > 0,

Lridge(w) = (Xw − y)T(Xw − y) + λ

D∑
i=1

w2
i (1)

Before proceeding to find the w that minimises Lridge(w), a few words are in order. First,
notice that we’ve left the w0 term (for the constant 1 feature) out of the penalty. We think
of the magnitudes of the weights wi as a measure of the complexity of the model. However, a
translation of the output does not correspond to any additional model complexity. As a more
concrete example, if we think of predicting the temperature using measurements of pressure,
moisture, etc., we may choose to output the answer in ◦C (celsius) or K (kelvin). The fact that
we need to add 273 to every output to get the value in K does not make the model any more
complex!

Standardizing Inputs

Likewise, let’s consider the inputs x. Let’s consider a very simple model, ŷ = w0 +w1x, where x
is the temperature measured in ◦C (celsius). Now, if instead we use x′ which is the temperature

in ◦F (fahrenheit), the model becomes ŷ =
(
w0 − 160

9 w1

)
+ 5

9w1x
′. Thus, in one case, we would

get the term w2
1, in the other 25w2

1/81, which is less than one third of w2
1.

To avoid issues of scaling and translation, it is good practice to standardise all the input
variables, make them have mean 0 and variance 1 before fitting a model to the data. Don’t
forget to apply the same transformation to the test data!

1

If in addition we also centre the output variables, yis, then in the case of ridge regression
we will always get w0 = 0 (Problem Sheet 2). Thus, we can succinctly re-write the objective
Lridge in vector form as shown below.

Remark 1. Don’t forget to standardize the inputs and center the outputs before applying the
estimates derived in this section!

Lridge(w) = (Xw − y)T(Xw − y) + λwTw (2)

Suppose the data is 〈(xi, yi)〉Ni=1 with inputs standardised and output centered. Let us now
take the gradient of the above expression to find the optimal w.

Lridge(w) = wTXTXw − 2yTXw + yTy + λwTw

Taking the gradient with respect to w

∇wLridge = 2(XTX)w − 2XTy + 2λw

= 2

((
XTX + λID

)
w −XTy

)
Above ID is the D ×D identity matrix. We set the gradient to 0 and solve for w(

XTX + λID

)
w = XTy

to obtain the solution

wridge =
(
XTX + λID

)−1
XTy (3)

Unlike in the case of the least-squares estimate, we do not need to be concerned about
whether or not the matrix (XTX + λID) is invertible. For λ > 0, this is always invertible
(Exercise: Show that this is the case.). The quantity λ controls the tradeoff between minimising
the prediction error and reducing the model complexity. As λ→ 0, we recover the least-squares
estimate, where we are only concerned with minimising the sum of the squares of the residuals.
On the other hand as λ → ∞, we will get w = 0 as the solution. Clearly, this is not desirable
and the goal is to pick a λ that balances the two parts of the objective more evenly.

We’ll return to the question of choosing λ shortly, but let’s look at an alternative formulation
of ridge regression.

minimise (Xw − y)T(Xw − y)

subject to: wTw ≤ R

It is not that hard to show that these two formulations are equivalent (the form in Eq. (2) is
called the Lagrangean form), however, we’ll leave that as an exercise for the interested student.
When R → ∞, there is essentially no constraint and the solution is that given by the least
squares estimate, let’s call it wLS (in fact, this is the case for any R ≥ wT

LSwLS). For smaller R,
we’ll get a solution w such that wTw = R, and the contour curves of wTw and (Xw−y)T(Xw−
y) are tangent at the solution. Figure 1(a) shows the solution to the objective function as a
function of R (equivalently λ). Figure 1(b) shows how the weights on features vary as a function
of λ for ridge regression performed on the diabetes dataset (available in scikit-learn).

2

(a) (b)

Figure 1: (a) Solution to ridge regression as a function of R (or λ) (b) Plot showing the weights
of each feature obtained in ridge regression as a function of − log(λ).

1.2 The Lasso

The Lasso (which stands for least absolute shrinkage and selection operator) is an alternative
way to penalise model complexity. In the Lasso objective, instead of adding the sum of the
squares of the weights as a penalty term, we add the sum of the absolute values of the weights,
i.e.,

∑D
i=1 |wi|, as a penalty term to the objective function. As in the case of Ridge regression,

it is a good idea to standardize the input variables. For λ > 0, the lasso objective is expressed
as:

Llasso(w) = (Xw − y)T(Xw − y) + λ

D∑
i=1

|wi| (4)

Unlike Ridge Regression, there is no closed form solution for w that minimises the Lasso ob-
jective; we have to resort to general optimisation methods. Clearly, as in the case of Ridge
Regression, when λ = 0, we recover the least squares solution, whereas when λ → ∞, we get
the solution w = 0. The equivalent constrained optimisation form for the Lasso objective is the
following:

minimise (Xw − y)T(Xw − y)

subject to:
D∑
i=1

|wi| ≤ R

As R → ∞ (which is equivalent to λ → 0), we recover the least squares solution; when
R = 0 (which is equivalent to λ → ∞) we get w = 0 as the solution. For intermediate
values of R we get a solution such that

∑D
i=1 |wi| = R and the contour curves of

∑D
i=1 |wi| and

(Xw − y)T (Xw − y) are tangent at the solution. However, the contour curves of
∑D

i=1 |wi|
have corners, where the tangent is not well defined. This happens when some of the wi are
exactly zero! As a result, the model fit by Lasso may have several zero weights, and hence
it can be seen as a form of variable selection (hence the name Lasso). Figure 2(a) shows the
solution to the Lasso objective as a function of R (equivalently λ). Figure 2(b) shows how the

3

(a) (b)

Figure 2: (a) Solution to the Lasso as a function of R (or λ) (b) Plot showing the weights of
each feature obtained using Lasso as a function of − log(λ).

weights of features vary as a function of λ for Lasso performed on the diabetes dataset (available
in scikit-learn). We can see that for λ up to a certain level, several of the weights are exactly
0; compare this to Ridge Regression in Fig. 1(b).

1.3 Discussion

Let us return to the toy problem introduced in Section 2.2 in the previous lecture in which the
learning algorithm used irrelevant features in order to fit noise. Figure 3 shows the training
and test error for least squares, Ridge Regression and Lasso on the problem. We see that both
least squares and Ridge Regression do quite badly as we allow the model to use more and more
irrelevant features. Recall that the first feature is the only relevant feature; but as we introduce
more irrelevant features these models start fitting noise. Lasso actually does very well even
when all 100 features (99 of which are irrelevant) are used. The reason why Ridge Regression
performs poorly, while Lasso does very well, in this case is probably due to the fact that it is
important to have most features other than the first one have zero weight. As discussed above
this is more likely to be the case with Lasso than with Ridge Regression because of the corners
in the Lasso penalty term. This can be seen in Figures 3(b), (c), (d) where the actual weights
on the features are shown as a function of the number of features used in the model. As more
and more irrelevant features are allowed, both the least squares and Ridge Regression model
put weight on irrelevant features; this happens to a much lesser extent in the case of Lasso.

In the next lecture, we will see a good theoretical justification for Ridge Regression through
the lense of the Bayesian Approach to Machine Learning.

2 Model Selection

Let us now return to the question alluded to several times so far about how to select various
hyperparmeters such as λ (in Ridge and Lasso), the degree (in polynomial basis expansion),
and the width parameter γ (in kernel regression). In general, as we start using more and more
complex models to fit the data, we might have more hyperparameters that need to be selected.

4

(a) (b)

(c) (d)

Figure 3: All plots concern the toy problem introduced in Lecture 5 (a) Training and test error
for least squares, Ridge Regression and Lasso as a function of the number of features used. (b)
Weights as a function of the number of features used in the model for least squares (c) Weights
as a function of the number of features used for Ridge Regression (d) Weights as a function of
the number of features used for Lasso

2.1 Validation

Let us start with the setting where the data is relatively plenty. In this case, we divide the
data into a training set and a validation set. The training set will be used to actually train the
model parameters (such as w, not the hyperparameters!) and the validation set will be used
to pick suitable values for the hyperparameters. Of course, in reality we care about testing our
model on completely unseen data. When applying machine learning in the real-world, tests will
present themselves! However, in academic settings, we can keep aside yet another part of the
data called the test set, where we’ll evaluate the performance of our models after performing
training and validation. In academic settings, the test set should not be touched at all except
for reporting the performance of the models!

Now, let’s say we have only one hyperparameter to choose, say λ. We start with a possible
set of values that we may want to assign to λ, e.g., λ ∈ {0.01, 0.1, 1, 10, 100}. In general, the
range of hyperparameters should be chosen depending on the sensitivity of the trained model to

5

λ training
error(%)

validation
error(%)

0.01 0 89
0.1 0 43
1 2 12
10 10 8
100 25 27

(a)

(b)

Figure 4: (a) (Made-up) Errors on training and validation sets. (b) Curves showing error on
training and validation sets as a function of λ for Lasso.

the hyperparameters; thus they may be on a log scale, linear scale, etc.1 Fig 4(a) summarises
(made-up values of) the error on the training set and the validation set for some model. Since,
we’ve not used the validation set as part of the training set, we’ll trust the performance on the
validation set as being more representative than that on the training set. On the training set,
we may have overfit depending on the complexity of the model. Thus, in this case we’ll pick
λ = 10 as the value for the hyperparameter. Once the value of the hyperparameter is fixed, it
is often a good idea to train the model using all available data (including the one previously
used for validation), since the more data we use in the training the more accurate our model
is likely to be. If we plot the curves for the training and validation error as a function of
the hyperparameter, the validation error curve typically has a U -shape, where the validation
error is high on one-side because of overfitting (where the training error is typically low) and
on the other side because of underfitting (where the training error is also high). The optimal
hyperparameter to be chosen is at the bottom of the U shape (see Fig. 4(b)). When there are
multiple hyperparameters to be chosen, we can make a “grid” of all possible combinations of
values for the hyperparameters and pick the combination that is most suitable; this is called grid
search. Grid search may be very costly even when the number of hyperparameters is relatively
modest because of the exponential size of the search space. Techniques such as random search,
or Bayesian black-box optimisation can be applied; we will not cover them in this course.

When data is scarce, keeping aside a validation set is not a good idea. In this case, it
is more common to divide the data into K parts (called folds) and then use K − 1 parts as
the training set and use the performance on the Kth part for validation (see Fig. 5). This is
then repeated across all the folds and the average error on the fold used as the validation set
(over the K different choices) is used as a proxy for the validation error. This has the effect of
reducing the variance in the validation error and hence is usually more suitable than using a
small validation set. It is common to use K = 5 or K = 10. One extreme case is to use K = N ,
where N is the number of datapoints. In this case, in each instance we are training on N − 1
datapoints and testing the performance on the N th one, averaging over all possible choices. This
method is called leave-one-out-cross-validation or LOOCV for short. However, this means that

1While looking at existing literature will provide clues as to what scales should be chosen for various hyper-
parmeters, there will be times when this will only be clear after one round of validation.

6

valid train train train train

Run 1

train valid train train train

Run 2

train train valid train trainRun 3

train train train valid train

Run 4

train train train train valid

Run 5

Figure 5: 5-fold cross validation.

we are running the training algorithm N times which can be computationally expensive. Some
methods (such as least squares) have the property that the influence of one datapoint from the
trained model can be quickly removed without explicitly re-training, however in general this is
unlikely to be the case.

2.2 Feature Selection

As discussed earlier, having a small training set with a large number of features may result
in overfitting due to a learning algorithm trying to fit noise. There are situations were it is
conceivable due to prior knowledge of the application domain that only a small number of
features are actually relevant for the learning task. Thus, if we knew which features were
irrelevant, we could remove them from our training set and hence prevent overfitting from
happening. If we have n features, there are 2n different subsets of features that we could
remove and check in each case whether the generalization error decreases. It is obvious that
this approach is infeasible already for relatively modest n. In this section, we describe two
computationally feasible heuristics that are often applied in practice for discovering relevant
subsets of features.

The first is forward search, a greedy heuristic that is described in Algorithm 1, and commonly
used in practice in order to circumvent searching through the exponential set of possible feature
subsets. It wraps around an existing learning algorithm that is repeatedly executed in Line 5 of
the algorithm for different subsets of features. Even though forward search avoids exploring 2n

Algorithm 1 Forward search

1: F ← ∅
2: do
3: for all i ∈ {1, . . . , n} \ F do
4: Fi := F ∪ {i}
5: EFi

:= generalization error when trained using only features from Fi

6: end for
7: F := Fi for the i for which EFi is minimal
8: while F 6= {1, . . . , n} . alternatively while |F | is less than some fixed threshold
9: return the F with the smallest generalization error encountered

subsets, in the version above it will still make O(n2) calls to the underlying learning algorithm,
which can be too expensive.

An alternative, computationally less heavy, way of selecting potentially relevant features
is filter feature selection. It is, informally speaking, based on the idea that some features xi
provide more information about the output y than others. One way to measure the contribution
of a feature xi is to compute the mutual information between xi and the output y (assuming

7

for simplicity that xi and y are discrete):

I(xi, y) =
∑
xi∈X

∑
y∈Y

p(xi, y) · log
p(xi, y)

p(xi) · p(y)
.

The above probabilities can be obtained from their empirical distribution on the training set.
Mutual information is a concept coming from information theory and provides a measure of
how much bits of information one can obtain about a random variable through another.2 If xi
and y are uncorrelated then I(xi, y) = 0, whereas a strong correlation between xi and y would
result in a high value of I(xi, y) and would thus mean that xi is relevant for y. It should now
be obvious how filter feature selection works: compute I(xi, y) for all xi and keep the k features
with the top k values of I(xi, y). Of course, other scoring functions than I(xi, y) can be used.

Discussion

The question of model selection is an important one. We’ve only seen the very basic approaches
employed in practice. We’ll return to these questions a few times later in the course. In
particular, for classification problems, it is often necessary to treat errors of different kinds
differently. Predicting that a tumor is malignant when it is not vs predicting a tumor is benign
when it is not are not equally problematic errors! Thus, when performing model selection, it is
important to assign different costs to different types of errors. In unsupervised learning, where
we have no access to the ground truth the problem of model selection requires using different
criteria.

The machine learning pipeline we’ve see so far is: get data, choose a model, train a model and
select hyperparameters, and test the model. What happens when the test turns out to be bad?
We have no option but to start from scratch; however, in general we may not always get new
data. We may simply be left with the option of choosing a different model or hyperparameters
and use the existing data. However, notice that we’ve already “seen” the test set, although only
implicitly, when testing our model. Thus, through this process we’ve leaked some information
from the test data to the machine learning pipeline and hence can no longer assume that our
model is completely blind to the test set. When using the test set sparingly, this does not
usually pose a huge problem; however, if the test set is not utilised carefully, this can lead to
serious overfitting! For example, in Kaggle competitions it often happens that some top teams
on the public leaderboard are not close to the top on the private leaderboard! This may happen
because these teams are submitting too many entries and implicitly overfitting on the data used
for the public leaderboard.3

References

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

2Mutual information can also be expressed in terms of the Kullback-Leibler (KL) divergence: I(xi, y) =
KL(p(xi, y)||p(xi) · p(y)). The Kullback-Leibler convergence measures the difference between two probability
distributions. The interested reader is referred to (Goodfellow et al., 2016, Chap 3.13) for a more formal treatment.

3An interesting blog post about topping the public leaderboard in Kaggle without reading the data is available
here: http://blog.mrtz.org/2015/03/09/competition.html.

8

