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1 Bayesian Approach to Machine Learning

In this section, we briefly describe the Bayesian approach to machine learning and it’s con-
nections to Ridge Regression and Lasso. For the most part in this course, we’ll not adopt the
Bayesian approach. However, it is well worth understanding at least the basic aspects of this
approach. The description of the Bayesian approach and its relation to the “frequentist” ap-
proach provided here is far from adequate and those interested should refer to Murphy (2012,
Chap. 5, 6) and beyond.

In the “frequentist” approach, the assumption is that there are “true” parameters, unknown
though they may be to us. The goal is to make use of data, which depends on the true parameters
and which we observe through some random process, to infer the true “unknown” parameters.
In the Bayesian approach, in the absence of any data, a belief about what the parameters may
be is represented by a prior distribution on the parameters; let us denote this prior on the
parameters by p(w). As in the frequentist setting, the data will depend on parameters and
will be observed through some random process. When the data, denoted by D is observed,
the belief about the parameters is updated and represented using what is called the posterior
distribution. This distribution is obtained using Bayes’ Rule using the prior distribution p(w)
and the (probabilistic) data model, denoted by p(D | w). Then, the posterior on the model
parameters, given the data, is given by:

p(w | D) =
p(D | w) · p(w)

p(D)
(1)

Thus, the posterior reflects the updated belief about the parameters after observing some data.
In the limit of infinite data, the posterior distribution will become a point mass at the maximum
likelihood estimate (as long as the prior has non-zero mass everywhere).

Let us now discuss how a prediction is made using this approach. To make things a bit more
concrete, let’s suppose that the new input point is xnew and we wish to predict the output ynew
(or in general a distribution over the output). There are two approaches to this, the first is to
use a point-estimate (or a plugin estimate) which uses a single set of parameters that are chosen
to represent the posterior distribution. For example, this may be the posterior mean, median or
mode. The second approach is to use the entire posterior distribution to make the prediction,
sometimes referred to as the full Bayesian approach, by integrating out the parameters w. Thus,
we may express:

p(y | xnew,D) =

∫
w
p(y | w,xnew) · p(w | D) dw.

While the full Bayesian approach is certainly desirable as it accounts for all our prior beliefs
as well as the observed data, for all but the simplest of models this can be computationally
expensive (or even intractable!). There is a lot of research on developing approximate methods
in the case of computational intractability, which we will not cover in the course.

Let us now return to the first approach, which is to obtain a point estimate. The mode,
however unrepresentative of the distribution as whole it may be, stands out for one reason. In
order to compute the median or mean of the posterior distribution it is necessary to compute
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the denominator of (1). This denominator represents just the probability of observing the data,
obtained by integrating out the parameters w, i.e.,

p(D) =

∫
w
p(D | w) · p(w) dw.

However, except in relatively simple cases, even this integral may be computationally expensive
to evaluate. In order to obtain the mode though, the denominator is unnecessary, it can be
obtained by simply looking for w where the numerator of (1) achieves the maximum value.
Thus, it is often common to express the posterior as,

p(w | D) ∝ p(D | w) · p(w) (2)

The mode of the posterior is a point estimate known as the maximum a posteriori or MAP
estimate. This can be obtained by finding w that maximises the RHS of (2). For most of this
section, we’ll focus on computing the MAP estimate.

1.1 Bayesian Linear Regression

Let us now look specifically at linear regression through the Bayesian approach. We’ll still
consider the linear model given by,

p(y | x,w) = N (w · x, σ2)

Throughout this section, we’ll think of σ2 as fixed and known. Thus, we’re only representing w
as the parameters. We need to define a prior distribution over w; let us assume that this is a
spherical Gaussian distribution with mean 0 and variance τ2 in each direction,

p(w) = N (0,Λ), where Λ = τ2ID

=
1

(2πτ2)D/2
· exp

(
−wTw

2τ2

)
As we’ve been doing so far, given data D = 〈(xi, yi)〉Ni=1, we can represent y given model
parameters w and inputs X as,

p(y | X,w) =
1

(2πσ2)N/2
· exp

(
−(y −Xw)T(y −Xw)

2σ2

)
Thus, we can express the posterior as,

p(w | X,y) ∝ 1

(2πσ2)N/2
exp

(
−(y −Xw)T(y −Xw)

2σ2

)
· 1

(2πτ2)D/2
exp

(
−wTw

2τ2

)
The maximum a posteriori or MAP estimate is obtained by finding the value of w that max-
imises the RHS of the above expression. Since σ and τ are fixed, we can express this as:

wmap = argmax
w

exp

(
−(y −Xw)T(y −Xw)

2σ2
− wTw

2τ2

)
Using the fact that log is monotone and converting argmax to argmin by flipping signs, we get

wmap = argmin
w

(
(y −Xw)T(y −Xw)

2σ2
+

wTw

2τ2

)

wmap = argmin
w

(
(y −Xw)T (y −Xw) +

σ2

τ2
·wTw

)
(3)

Comparing the form of (??) and (3), we see that the MAP estimate is exactly that given
by minimising the Ridge Regression objective with λ = σ2/τ2.
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Figure 1: Full Bayesian Approach for polynomial regression in one dimension.

1.1.1 Full Bayesian Approach for Linear Regression

We mentioned earlier that the full Bayesian approach can be computationally expensive. In
the case of Bayesian linear regression discussed in this section, everything can be expressed in
closed form. The calculations are a bit tedious and the interested student is referred to Murphy
(2012, Sec 7.6). However, let us see the advantage of this approach. For the setting described
here, we can express the distribution over the output y of a new data point xnew as follows:

p(y | wnew,D) = N (wmap · xnew, σ
2 + xT

newVNxnew) (4)

where

VN = σ2

(
XTX +

σ2

τ2
· ID

)−1

(5)

It can be shown (using singular value decomposition) that the variance in (4) is relatively
small for xw that “look like” previously observed data and large for those that don’t. Thus, the
predictions include higher degree of uncertainty in parts of the input space where there is scarce
data and less uncertainty where data is plenty. Figure 1 shows this for polynomial regression
in one dimension. As shown in the figure, one way to think of the full Bayesian approach is
to make prediction using w sampled from the posterior distribution; the figure shows models
represented by several samples of w drawn from the posterior distribution as well as error bars
representing the uncertainty. It can be seen that in the region where there is a lot of data
almost all models drawn from the posterior make almost the same predictions, but in regions
where data is scarce the predictions can be quite different.

Choosing a Prior

How to choose a prior in the Bayesian approach? That is one of the central questions and often
a point of criticism of this approach. While in principle one should choose a prior that reflects
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the true beliefs, often priors are chosen for mathematical convenience. In the absence of any
definite beliefs about the prior, one should choose a prior that is as uninformative as possible.
We’ll not cover these aspects of the Bayesian approach in the course; the interested student
may refer to the textbook by Murphy (2012).
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