
Machine Learning - Michaelmas Term 2016

Lectures 12, 13 : Support Vector Machines and Kernel Methods

Lecturers: Christoph Haase & Varun Kanade

In the previous lecture, we studied logistic regression, a discriminative model for classifica-
tion. In this lecture, we’ll study another model for classification problems, known as support
vector machines. Unlike logistic regression, there is no natural probabilistic interpretation of
this model; however, it is possible to construct one, if one really wishes.1

When studying logistic regression, we observed that the discriminating boundary (in the
case of binary classification problems) was linear. This will be our starting point when studying
support vector machines, or SVMs, for short. We’ll explicitly try to separate the data using a
linear separator and introduce the maximum-margin principle, which is one way to characterise
optimal linear separators.

1 Support Vector Machines: Primal Formulation

In this lecture, we will adopt the notation that the class labels are given by y = +1 and y = −1,
which we will refer to as positive examples and negative examples, respectively (rather than
y ∈ {0, 1}; recall that this is just for mathematical convenience). Let us start with a simple
two-dimensional problem; suppose we are given some data that is labelled as positives and
negatives. We wish to identify a linear separator, which in this case is simply a line, but in
higher dimensions will be a hyperplane, that separates the positives from negatives. When the
data admits such a linear separator (which in general it may not), we refer to the setting as
the linearly separable setting. The data shown in Figure 1 is linearly separable, and there are
several possible linear separators Which of these should we pick?

Figure 1: Positive and negative labelled data with possible linear separating boundaries.

1See (Murphy, 2012, Chap 14.5.5) for details.

1

Figure 2: Figure depicting calculations of the distance of a point from a hyperplane.

Most likely, we would conclude that the black line (in the middle for those viewing without
colour) is the most suitable, because somehow it separates the data by a larger margin. A
precise mathematical formulation of this idea gives rise to the maximum margin principle and
the support vector formulation. The margin for a datapoint is simply the distance of the point
from the separating hyperplane. The maximum margin principle asserts that the separating
boundary that maximises the smallest margin, i.e., has the maximum least distance between
the data and the boundary, should be preferred.

1.1 Geometry Review

Let us recall some notions from elementary geometry. A linear separator in RD is constructed
using w ∈ RD and w0 ∈ R; the set of all points x ∈ RD satisfying w ·x+w0 = 0 is a hyperplane.
A hyperplane divides RD into two halfspaces; all points x on one side of the halfspace satisfy
w · x + w0 > 0 and those on the other satisfy w · x + w0 < 0. The distance of a point x to the
hyperplane is given by:

|w · x + w0|
‖w‖2

,

where ‖w‖2 =
√∑D

i=1w
2
i is the Euclidean norm of the vector w. Note that the vector w

points in a direction orthogonal to the hyperplane defined by {x | w · x +w0 = 0}. A pictorial
explanation of this is shown in Figure 2.

1.2 SVM Primal Formulation: Linearly Separable Case

Let us now use these distance formulae to formulate the notion of maximum margin in mathe-
matical terms. For now, let us continue to assume that we are in the linearly separable setting.

2

First, let us simply try to write conditions that must be satisfied to find some separating hy-
perplane (not necessarily one that maximises the margin). Let D = 〈(xi, yi)〉Ni=1 be the training
data available, with yi ∈ {−1,+1}. We want to find w ∈ RD, w0 ∈ R, satisfying:

yi(w · xi + w0) ≥ 1 for i = 1, . . . , N (1)

Let us take a moment to understand what the constraints represented by (1) demand. All
points with yi = +1, must have a positive value of w · x + w0, i.e., lie in the positive halfspace
created by the hyperplane w · x + w0 = 0; similarly all points with yi = −1 should lie in the
negative half-space. However, we could have simply used 0 on the RHS of (1) and made the
inequalities strict. Why did we not do this? First, because we’re dealing with a finite dataset,
we will always be able to find some value, say ε, such that the constraint in (1) is satisfied
by replacing 1 on the RHS by ε. However, if some (w, w0) satisfies constraint (1) with ε on
the RHS, then (wε ,

w0
ε) satisfies (1) with 1 on the RHS. Thus, there is no loss of generality by

using 1 on the RHS of (1).2 So far, we have not talked about the margin; let us now address

this. Notice that the margin for any datapoint is given exactly by yi(w·xi+w0)
‖w‖2

. This is because

|w · xi + w0| = yi(w · xi + w0), as yi = sign(w · xi + w0). Thus, the margin for any datapoint
must be at least 1

‖w‖2
, since they all satisfy (1). To obtain a maximum margin formulation,

we could simply maximise 1
‖w‖2

subject to the inequality constraints given in (1). Instead, it is

easier to use the equivalent formulation that minimises ‖w‖22.

minimise
w,w0

1

2
‖w‖22 (2)

subject to : yi(w · xi + w0) ≥ 1 for i = 1, . . . , N (3)

Remark: Problem Sheet 3 asks you to show that a more natural formulation involving the
margin is equivalent to the formulation presented above.

Note that the above program (defined by (2)-(3)) is a quadratic program, as the objective
function is quadratic and all the constraints are linear. In fact, as the objective requires min-
imising a convex function (why?), and the feasible set in RD+1 (D + 1 because w ∈ RD and
w0 ∈ R) as defined by the constraints in (3) is convex (why?), this is a convex program. In
principle, this means that it can be solved by generic convex optimization methods. However,
some of these may be quite slow, and we will discuss faster methods to solve this particular
type of quadratic program.

Figure 3 shows the linear separator obtained by solving the above program (the black line).
The figure also shows two parallel hyperplanes (lines) in dotted magenta that contain the
points on either side of the separator that are closest to the separator. As these are the points
that are closest to the separator, they have the least margin, and are called support vectors.
(Incidentally, these are also the points for which the inequality (3) will be tight for the optimal
solution. This point will be important when we consider the dual formulation. The reason
for the name “support vectors” will also become a bit more clear when we consider the dual
formulation of the SVM objective.)

1.3 SVM Primal Formulation: Non-separable Case

Let us now consider what would happen if our data looked like the one shown in Figure 4,
where it is clear that there is no linear separator that separates the positives from the negatives.

2If we had infinite data, it is possible to envision scenarios where there exist w, w0 satisfying the inequality
y(w ·x+w0) > 0 for all (x, y), but not y(w ·x+w0) ≥ 1. For example, imagine the data in one dimension being
{(x,+1) | x ∈ R, x > 0} ∪ {(x,−1) | x ∈ R, x < 0}.

3

Figure 3: Figure showing the linear separator obtained by solving the SVM program (2, 3).
The dotted magenta lines show hyperplanes (lines) parallel to the separator that contain points
closest from the separator on either side. These points are called support vectors shown in light
blue circles.

Figure 4: Data that is not linearly separable into positives and negatives.

4

When faced with such data, of course, we expect both our training error, and as a consequence,
generalisation (or test) error, to be non-zero. So far, the classifiers (and regression models) that
we have studied have naturally incorporated imperfect data through minimising a loss function
(or negative log-likelihood). However, the problem formulation, as framed in (2)-(3) admits
no solution when the data is not linearly separable. Thus, we have to change the problem
formulation itself.

What would be a good relaxation? Since we are interested in classification, a natural goal is
to look for a linear separator that makes the least mistakes (errors) on the training data. Unfor-
tunately as formulated, this problem is NP-hard. Thus, we have no hope of solving the resulting
optimisation problem within feasible computational resources.3 While not exactly mathemat-
ically accurate, the idea of minimising the number of misclassified points roughly corresponds
to solving the optimisation problem defined by (2)-(3), where we ask that as many constraints
given by (3) as possible should be satisfied. An alternative, and more feasible, approach is
to allow all the constraints to be satisfied with some slack. This is done by introducing slack
variables, ζi, one for every constraint. We then add a penalty for using the slack terms in the
objective function. Thus, we get the quadratic program:

minimise
w,w0

1

2
‖w‖22 + C

N∑
i=1

ζi (4)

subject to : yi(w · xi + w0) ≥ 1− ζi for i = 1, . . . , N (5)

ζi ≥ 0 for i = 1, . . . , N (6)

The addition of slack variables ζi ensures that a feasible solution to the program always exists,
by allowing ζi to be as large (and non-negative) as necessary. Of course, the objective function
penalises these large ζi values. Let us briefly discuss why we have added the constraint ζi ≥ 0.
If we allowed ζi to be negative, then for a point that is correctly classified and far from the
separator, setting ζi to be large and negative would allow the program to compensate some of
the penalty incurred on points that are misclassified. However, we don’t necessarily think that a
point that is correctly classified by a huge margin, as opposed to simply a large margin, should
help in reducing the overall penalty for misclassified points. Thus, forcing ζi to be non-negative
ensures that there is a penalty incurred for classifying points incorrectly (or being correct but
by a very small margin), but there is no bonus for classifying points correctly by a really large
margin!

Loss Function View of the SVM Primal Formulation

Let us now consider an optimal solution (w, w0, ζ) obtained by solving the program (4)-(6),
where ζ = (ζ1, . . . , ζN). Note that the optimal solution must satisfy the following for every
i = 1, . . . , N : either ζi = 0 or ζi = (1− yi(w ·xi +w0)) ≥ 0. Alternatively, we can write this as:

ζi = max{0, 1− yi(w · xi + w0)}

Thus, let `hinge(w, w0; xi, yi) = max{0, 1 − yi(w · xi + w0)} denote the hinge loss function, so
called because of its shape, shown in Figure 5(a). Then we could alternatively view the SVM
formulation as simply minimising the following objective function:

LSVM(w, w0 | X,y) =
1

2
‖w‖22︸ ︷︷ ︸

Regularizer

+C

N∑
i=1

`hinge(w, w0; xi, yi)︸ ︷︷ ︸
Loss

3Unless of course P = NP!

5

−6 −4 −2 0 2 4 6
0

2

4

6

y(w · x + w0)

H
in

g
e

L
o
ss

(a) Hinge Loss with y ∈ {−1, 1}

−6 −4 −2 0 2 4 6
0

2

4

6

(2y − 1)(w · x + w0)

L
og

is
ti

c
L

o
ss

(b) Logistic Loss with y ∈ {0, 1}

Figure 5: Comparison of loss functions for SVM and logistic regression.

As a comparison, let us view the negative log-likelihood of logistic regression on a single
datapoint (xi, yi) as a loss function. As yi ∈ {0, 1} for logistic regression, to compare more
effectively, let zi = (2yi − 1), so that zi = 1 if yi = 1 and zi = 0 when yi = −1. Then the
negative log likelihood for a single point (xi, yi) is given by:

NLL(yi; w,xi) = −

(
yi log

(
1

1 + e−w·xi

)
+ (1− yi) log

(
1

1 + ew·xi

))
= log

(
1 + e−zi(w·xi)

)
= log

(
1 + e−(2yi−1)(w·xi)

)

We can view this as a loss function, called logistic loss, and is shown in Figure 5(b).

2 Support Vector Machines: Dual Formulation

Let us now consider the dual form of the Optimization Problem (4)-(6). Let us begin by looking
at constrained optimization problems a bit more generally before we study the specific dual SVM
problem.

2.1 Constrained Minimisation Problems

By necessity our discussion in this section will be rather terse and brief. For further details
please refer to a textbook on optimisation, e.g., (Boyd and Vandenberghe, 2004). Let us consider
the primal form of a constrained minimisation problem.

minimise F (z) (7)

subject to:

gi(z) ≥ 0 i = 1, . . . ,m (8)

hj(z) = 0 j = 1, . . . , l (9)

We can look at the Lagrange form of the above constrained minimisation. In order to do so,
we need to introduce dual variables αi, i = 1, . . . ,m for each of the inequality constraints (8) and
µj , j = 1 . . . ,m for each of the equality constraints (9). Then, the Lagrange form is expressed
as:

Λ(z;α,µ) = F (z)−
m∑
i=1

αigi(z)−
l∑

j=1

µjhj(z) (10)

6

Karush-Kuhn-Tucker (or KKT) conditions are necessary conditions for a critical point
(z∗,α∗,µ∗) of Λ to be a minimum of the constrained minimisation problem (7)-(9). These
conditions are:

1. Primal Feasibility:

gi(z
∗) ≥ 0 i = 1, . . . ,m (11)

hj(z
∗) = 0 j = 1, . . . , l (12)

2. Dual Feasibility:

α∗i ≥ 0 i = 1, . . . ,m (13)

3. Complementary Slackness:

α∗i gi(z
∗) = 0 i = 1 . . . ,m (14)

For convex minimisation problems, i.e., when F and g1, . . . , gm are convex and h1, . . . , hl
are affine,4 the KKT conditions are necessary and sufficient. This is the case for the SVM
Optimisation Problem (4)-(6).

2.2 SVM Dual Optimisation Problem

Let us now write the Lagrange form for the SVM optimisation problem (4)-(6) by introducing
the variables αi and µi for the constraints given in (5) and (6) respectively. Then the Lagrange
form is:

Λ(w, w0, ζ;α,µ) =
1

2
wTw + C

N∑
i=1

ζi −
N∑
i=1

αi
(
yi(w · xi + w0)− 1 + ζi

)
−

N∑
i=1

µiζi (15)

In order to find critical points of Λ, we need to differentiate with respect to all the variables.
Let us first focus on the primal variables, w, w0, ζ1, . . . , ζN . We can write the following:

∂Λ
∂w0

= −
N∑
i=1

αiyi (16)

∂Λ
∂ζi

= C − αi − µi (17)

∇wΛ = w −
N∑
i=1

αiyixi (18)

Let us now substitute the expressions for the primal variables obtained by setting the deriva-
tives in (16)-(18) to 0. The constraints µi ≥ 0 in (13) and C − αi − µi = 0 obtained by setting
∂Λ
∂ζi

= 0 in (17), can be replaced by the constraints 0 ≤ αi ≤ C and as a result the variables

µi can be eliminated entirely. Substituting w =
∑N

i=1 αiyixi in (15) and using the constraint
C − αi − µi = 0, we get a reduced expression for the Lagrange function.

g(α) =
1

2

N∑
i=1

N∑
j=1

αiαjyiyj(xi · xj) +

N∑
i=1

αi −
N∑
i=1

αiyixi ·

 N∑
j=1

αjyjxj

=

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj(xi · xj)

4An affine function is of the form w0 + w1z1 + · · ·wDzD.

7

In order to find the critical points of Λ satisfying the KKT conditions (11)-(14), it is sufficient
to find the critical points of g that satisfy the constraints, 0 ≤ αi ≤ C and

∑N
i=1 αiyi = 0

(obtained by using (16) and setting ∂Λ
∂w0

= 0). However, we observe that g is a concave quadratic

function and hence has a unique critical point which is also a global maximum of g. This gives
rise to the dual problem which we now state formally below.

maximise
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj(xi · xj) (19)

subject to :

N∑
i=1

αiyi = 0 (20)

0 ≤ αi ≤ C i = 1, . . . ,m (21)

Let us compare the form of the dual to that of the primal. In both cases the objective
function is quadratic, in the primal we are minimising a convex function and in the dual we are
maximising a concave function. However, the constraints in the dual form are extremely simple,
most of them are box constraints simply stipulating that each αi lie in the interval [0, C]; there
is also one additional linear equality constraint. On the other hand the primal constraints may
define a rather complex polytope. Also, the number of variables in the primal formulation is
N+D+1, whereas in the dual there are only N variables. This makes it particularly useful if D
is very large; either to begin with, or because we perform basis expansion to capture non-linear
discriminating boundaries. However, using the dual form does come at some cost: the dual
objective function requires N2 terms to express, whereas the primal objective only requires
N +D. Thus, when D is much smaller than N , it may still be more efficient to solve the primal
form directly.

Let us also look at the implications of the complementary slackness conditions. What these
conditions say is that for any i,

αi · yi(w · xi + w0 − 1 + ζi) = 0

This means that either αi = 0 or yi(w·xi+w0) = 1−ζi, i.e., the corresponding primal constraint
is satisfied with equality. This implies that xi is a support vector as it must be one of the points
with the least margin (see Fig. 3). The name support vectors becomes clearer when we see that
the solution w is of the form:

w =
N∑
i=1

αiyixi

Only the points xi for which the corresponding αi > 0 determine the solution, i.e., they form
the support of the solution.

Exercise: We have seen how using the dual problem and obtaining the solution α, we can
express w =

∑N
i=1 αiyixi. There remains the problem of finding w0. Outline how you would

find the value of w0 given the optimal solution to the dual α. (Hint : Once w is known you are
essentially solving a one-dimensional problem to find w0; you can find the optimal w0 in linear
time given (w · xi, yi) for i = 1, . . . , N .)

3 Kernels

Let us observe the form of the dual objective (19). Notice that an input xi only appears in the
objective as inner products with other inputs. Likewise, using (18), we know that the optimal

8

solution w is of the form:

w =

N∑
i=1

αiyixi

And hence for any new point xnew,

w · xnew =
N∑
i=1

αiyi(xi · xnew) (22)

Thus, to make a prediction on a new point, xnew, we only require the ability to compute inner
products with the datapoints, in fact, only with the support vectors. Thus, the SVM objective
could be solved using blackbox access to a function κ(·, ·), that given two inputs x, x′, returns
x · x′. This is essentially a kernel function.

3.1 Polynomial Basis Expansion

Let us consider the case where we perform a polynomial basis expansion up to degree d. As an
illustrative example, let us consider the case when D = 2 and d = 2. Thus, the original inputs
are points in R2 and we consider the map, x 7→ ψ2(x), where,

ψ2([x1, x2]T) =
[
1, x1, x2, x

2
1, x

2
2, x1x2

]T
(23)

Note that the dual formulation still has N variables, the only difference is that the inner
products, xi·xj , need to be replaced by ψ2(xi)·ψ2(xj). (Likewise, when making predictions.) On
the other hand, the primal problem, if using degree d basis expansion with D input features,
would have roughly Dd variables. Thus, the dual form allows us to fit increasingly complex
classifiers without significant increase in computational cost. Of course, there is still the problem
of generalization, i.e., if you fit increasingly complex classifiers with the same amount of data
and without regularization, you will overfit.

Let us address the computational question in greater detail. While it is true that the number
of inner products required to express the dual problem is always roughly N2/2, computing each
inner product when using degree d polynomial expansion may take time roughly Dd. The kernel
trick allows us to avoid this. Let us consider a slightly different polynomial basis expansion
than the one in (23), a map x 7→ φ2(x), given by:

φ2([x1, x2]T) =
[
1,
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2

]T
(24)

And for two inputs, x, x′, consider,

φ2(x) · φ2(x′) = 1 + 2x1x
′
1 + 2x2x

′
2 + x2

1(x′1)2 + x2
2(x′2)2 + 2x1x

′
1x2x

′
2

= (1 + x · x′)2 (25)

In general, if we have a degree d expansion, we can use a suitable expansion x 7→ φd(x), so that

φd(x) · φd(x′) = (1 + x · x′)d (26)

Note that φd still contains all the monomials of total degree up to d, and hence a linear classifer
using φd(x) as features can represent arbitrary degree d separating surfaces. However, if we let
κd(x,x

′) = φd(x) · φd(x′), then κd can be computed in time only O(n log d)! The function κd is
known as the degree-d polynomial kernel.

9

3.2 Mercer Kernels

The idea of kernels is considerably more general than outlined above. Let X denote the set of
inputs (not even necessarily some subset of RD); a function κ : X × X → R is called a kernel.
We’ll focus on kernels that are symmetric and non-negative, though kernels can be much more
general. The Gram matrix is defined as

K =

κ(x1,x1) κ(x1,x2) · · · κ(x1,xN)
κ(x2,x1) κ(x2,x2) · · · κ(x2,xN)

...
...

. . .
...

κ(xN ,x1) κ(xN ,x2) · · · κ(xN ,xN)

 (27)

for inputs 〈xi〉Ni=1, each xi ∈ X . A kernel is a Mercer kernel, or a positive definite kernel if the
Gram matrix is always positive semi-definite. Any kernel that can be viewed as arising from
an inner product (possibly in an expanded basis), is a Mercer kernel. However, there are other
kernels that can be shown to be Mercer kernels. In fact the ability to define kernels directly
without explicitly providing a feature expansion is one of their very appealing properties. As
we shall see in the examples in the next section, kernels may be defined directly on discrete
objects; constructing a kernel that captures similarity between discrete objects is often easier
than designing a map from a discrete space to a real vector space. However, the task of proving
that kernels are Mercer kernels is not always easy. These are a few rules that allow us to easily
compose kernels that are known to be Mercer kernels: Suppose that κ1 and κ2 are Mercer
kernels and α ∈ R+, then κ1 + κ2, ακ1 and κ1 · κ2 are all Mercer kernels. Furthermore, if
X ⊆ RD, then for any D ×D positive definite matrix B, κ(x,x′) = xTBx′ is a Mercer kernel.

Why Mercer Kernels?

A natural question is why the emphasis on Mercer kernels? Let us look at the SVM dual
objective in terms of the kernel.

g(α) =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjκ(xi,xj)

Or more succinctly, if K is the Gram matrix, y � α is the element-wise product of the two
vectors, also known as the Hadamard product, and 1 is the vector of all ones,

g(α) = 1Tα− 1

2
(α� y)TK(α� y) (28)

If K is positive semi-definite, then g(α) is concave and hence attains a unique maximum
value; if K is positive definite then the maximum value is achieved at a unique point. Thus, the
principal reason for choosing Mercer kernels is that the resulting SVM dual optimisation problem
can be solved using convex programming techniques. Otherwise, the KKT conditions are no
longer sufficient and the optimisation may have to be performed using non-linear programming
methods; this means that we either have to settle for local optima or run in time that is not
necessarily polynomial in the input size, which is typically infeasible for all but very small
problems.

Theory of Kernels

We have alluded to the fact that if a kernel can be expressed as an inner product then it is
a Mercer kernel. In fact the converse is also true, however, the resulting inner product space
is not necessarily finite dimensional. There is a rich and deep theory of kernel methods which
is beyond the scope of this course. However, the interested student may begin with the books
by Shawe-Taylor and Cristianini (2004) and Schölkopf and Smola (2002).

10

3.3 Examples of Mercer Kernels

We’ve already seen an example of a kernel, the degree d polynomial kernel in Section 3.1. Let
us now consider a few more examples. Further examples are provided in (Murphy, 2012, Chap
14.2) and the books by Shawe-Taylor and Cristianini (2004) and Schölkopf and Smola (2002).

3.3.1 RBF Kernels

The spherical Gaussian kernel is defined by,

κ(x,x′) = exp

−∥∥x− x′
∥∥2

2

2σ2

 (29)

Here σ is known as the bandwidth. We encountered these kernels when studying kernel ridge
regression, where we used the width parameter γ = 1

2σ2 . The spherical Gaussian kernel is indeed
a Mercer kernel. The category of kernels that only depend on

∥∥x− x′
∥∥

2
are known as RBF or

radial basis function kernels.
It is possible to use more general Gaussian kernels with a ‘covariance’ matrix Σ, however,

these kernels are no longer RBF kernels (though they are Mercer kernels).

3.3.2 String Kernels

The power of kernel methods is that kernels can be defined directly on discrete objects, e.g.,
strings. Let us consider an example (taken from (Murphy, 2012, Chap 14.2.6)). Proteins can be
viewed as sequences of amino acids represented as strings. There are 20 relevant amino acids de-
noted by letters in the alphabet A = {A,R,N,D,C,E,Q,G,H, I, L,K,M,F, P, S, T,W, Y, V }.
If we have two sequences say x and x′ of lengths 107 and 150 respectively:

x = IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLEQTVQGGTV

ERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWI

x′ = PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA

RLLEDQQVHFTPTEGDFHQAIHTLLLQVAAFAYQIEELMILLEYKIPRNEADGMLFEKK

LWGLKVLQELSQWTVRSIHDLRFISSHQTGIP

These strings have the string LQE in common. In general for every string s ∈ A∗ (the set of all
finite strings over the alphabet A), we can have a weight ws and define the kernel:

κ(x,x′) =
∑
s∈A∗

wsφs(x)φs(x
′) (30)

where φs(x) and φs(x
′) denote the number of occurrences of the string s as a substring in x and

x′ respectively. This is a Mercer kernel and can be computed efficiently in time O(|x| + |x′|),
where |x| denotes the length of the string x.

3.4 Discussion

Kernel methods are widely applicable in machine learning and not just restricted to support
vector machines. For instance, linear regression using kernel basis expansion, is nothing but a
kernelised form of linear regression. Let us briefly revisit the Ridge regression objective:

Lridge(w) =
N∑
i=1

(w · xi − yi)2 + λ ‖w‖22

11

We observe that the optimal solution w can always be written as w =
∑N

i=1 αixi. Why?
Suppose not. Let us write w = ws + w⊥, where ws is the component of w that lies in the
span{x1, . . . ,xN} and w⊥ is orthogonal to this linear subspace spanned by the inputs. Then,
since w⊥ · xi = 0 for all i = 1, . . . , N , w⊥ cannot affect (w · xi − yi)

2 at all. However,
‖w‖22 = ‖ws‖22 + ‖w⊥‖22. Thus, setting w⊥ = 0 can only decrease Lridge. Thus, equivalently we
can try to solve for αi rather than w, and we get a kernelised form of linear regression. You
will work out the details on Problem Sheet 3.

4 Multiclass Classification

Let us briefly discuss some generic approaches to convert binary classifiers to multiclass clas-
sifiers. We’ve already seen that logistic regression yields itself to a rather natural multiclass
formulation. In the case of the maximum-margin principle, it is possible, though mathemati-
cally a lot more involved to formulate a multiclass framework. However, in practice one of the
two following approaches is far more common.

4.1 One-vs-One (ovo)

Suppose our data has K different classes, i.e., y ∈ {1, . . . ,K}. The idea is simply to train
(
K
2

)
different binary classifiers for every possible pair of classes.

Now suppose we have these classifiers trained, at test time when presented with a new input
xnew, what class do we output? Each of the

(
K
2

)
classifiers gives us one possible class label. In

the end, we can simply choose the most commonly occurring, or plurality, label as our output.

4.2 One-vs-Rest (ovr)

In this case, instead of training
(
K
2

)
classifiers only K classifiers are trained. In each case data

from one class is considered as positive and all of the remaining data is considered negative.
For this reason it is called the one-vs-rest or one-vs-all multiclass classification.

Again, when we have a new input xnew at test time, how do we choose the label? In this
case, if we are lucky, exactly one of the K classifiers will classify this as ‘positive’ or on the
‘one’ side, and the remaining will classify it as ‘negative’ or on the ‘rest’ side. However, this
is a rather optimistic view, we may find ourselves in a situation where all classifers assign the
new point to the ‘rest’ side or more than one classifier assigns it to the ‘one’ side. In this case,
we rely on the fact that many classifiers, such as SVMs or logistic regression, actually output
w · xnew and then threshold it. Thus, we may use the value of w · xnew to assign the label.

Discussion

The one-vs-one (ovo) and one-vs-rest (ovr) methods for multiclass classification can be consid-
ered as somewhat hacky. In general, there is no principled way to choose the correct class label,
however, it is observed that these methods work rather well in practice.

There is no clear answer as to which one of the two is to be preferred. Let us discuss some
tradeoffs here. On the one hand in the ovo approach, we are required to train

(
K
2

)
classifiers

as opposed to just K classifiers in ovr. Thus, there may be a clear computational advantage to
using ovr. However, note that the problem size in the case of ovo may be substantially smaller,
since we are discarding all but two classes to train the classifier. Thus, if the running time of
the learning algorithm scales poorly with data size, say N2 or N3, then even though we are
training fewer classifiers in ovr, the fact that we are training on smaller sample sizes when using
ovo, may make ovo the preferred approach.

Also, one may argue that ovr depends on rather unnatural assumptions regarding decision
boundaries. Suppose you were using support vector machines for digit classification. In the ovr

12

approach, the classifier training 0 vs 1-9, is looking for a separator that puts 0s on one side
and all of the remaining digits on the other. However, the assumption that there is a linear
separating surface (or a non-linear one, but of relatively low-complexity if using basis expansion)
separating 0s from all the other digits may be much stronger than assuming that there is such
a separating surface between 0s and each of the other digits considered individually. Thus, the
ovo approach may create more natural ‘learning problems’.

It is possible to use more sophisticated approaches; one possible approach is to use some
sort of error-correcting-codes (ECC). The basic idea is to divide the classes into several pairs of
disjoint subsets. (Typically, all classes are included in at least some of the pairs, though not all
classes are included in every pair.) Then for each pair, a binary classifier is trained to separate
these two subsets. If this is done with enough pairs of subsets, an error correcting approach
can be used to determine the class label. While it is beyond the scope of the course to provide
the detailed history of this approach, it is well worth reading the paper by Allwein et al. (2000)
which received the ICML test of time award in 2010.

5 Measuring Performance

Let us briefly discuss how to measure performance of the classifiers we’ve trained. For regression
problems, our learning algorithms minimised some objective function on the training data, e.g.,
sum of squared residuals. Since the goal was to predict some real number as output, the value
of this same loss function on the test set itself served as a reasonable measure of performance.
In principle, we could measure performance using some alternative criterion.

In the case of classification, this need is more obvious. At the end of the day, we are less
interested in what value the likelihood or average hingeloss had on some training/test data, but
more interested in what the misclassification rate was. Thus, although the learning algorithms
(a.k.a. training procedures) may seek to minimise some objective such as the hinge loss in the
case of SVM, or negative log-likelihood in the case of logistic regression, we can (and perhaps
should) actually measure the test error as simply the number of misclassified points.

In certain cases, not all mistakes are equally problematic. Suppose you are training a
classifier to determine if a comment by a newspaper reader counts as abuse or not, depending
on what you value more, free expression or preventing online abuse, you may want to treat false
positive detection of abuse as more or less important. Similarly for medical diagnoses, it may
be preferable to err on one side or the other. Let us introduce names for some of these notions
in the case of binary classification. We can draw a 2× 2 table with actual labels (as columns)
and model predictions (as rows).

Actual Labels
Prediction yes no

yes true positive false positive
no false negative true negative

Due to their origins in statistics, false positive errors are also called Type I errors, and false
negative errors as Type II errors. For some classifier and its prediction on a dataset, let TP,
TN, FP and FN denote the number of datapoints that are true positives, true negatives, false
positives and false negatives respectively. Let us also introduce a few other terms that are
commonly used.

• True Positive Rate: The true positive rate (TPR), a.k.a. sensitivity or recall is the ratio
of the number of true positives to the number of actual positives, i.e., TPR = TP

TP+FN .

• False Positive Rate: The false positive rate (FPR), is the ratio of the number of false
positives to the number of actual negatives, i.e., FPR = FP

FP+TN .

13

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

(a) ROC Curve

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall (TPR)

P
re

ci
si

on

(b) Precision-Recall Curve

Figure 6: Curves showing tradeoff between (a) TPR and FPR (ROC curve), and (b) Precision
and Recall (FPR)

• Precision: The precision is the ratio of the number of true positives to the number of
predicted positives, i.e., Precision = TP

FP+TP .

For classifiers such as logistic regression, the classifier actually models the conditional distri-
bution on the labels, p(y = 1 | x,w) = σ(w · x). Ordinarily, we simply use the threshold of
1/2 to label a point positive, however, if we value two types of mistakes differently, we may
wish to lower or raise the threshold. For example, if we truly want very few false positives,
we could raise the threshold to 0.9, so that the classifier would predict something as positive
only if it were 90% sure (according to the model) that the point were positive. Similarly, for
generative models, the actual decision is made using the ratio p(y = 1 |x,θ)/p(y = 0 | x,θ);
when treating all errors equally, it is natural to threshold this ratio at 1 to decide whether to
predict 1 or 0, but when one type of errors are more costly we may lower or raise the threshold.
Finally, for classifiers like SVM, where there is no natural probabilistic interpretation, we can
simply modify the objective function to penalise false positive errors more than false negative
errors, or the other way round. In general, as we vary some parameter controlling our desired
tradeoff between the false positive rate (FPR) and the true positive rate (TPR), we can plot
what is called the Receiver Operating Characteristic or ROC curve. Typically, this curve will
go from the point (0, 0) where all predictions are negative, so there are no true or false positive
predictions, to the point (1, 1) where all predictions are positive, so both FPR and TPR are
1. Depending on our desired tradeoff, we may wish to pick one particular point on the curve;
the area under the curve (AUC) for the ROC curve is typically used as a measure to determine
which classifiers allow a good tradeoff. Obviously, the maximum (and the best) possible value
for AUC is 1; and the worst is 0. (See Fig. 6(a).)

In certain cases, such as when searching for documents in a large corpus about a certain
topic, most examples will be labelled negative. Thus, in this case the more interesting tradeoff
is between precision and recall. Note that precision indicates what fraction of returned data
(documents predicted as positive) were actually true positives (relevant documents), whereas
recall indicates what fraction of positive data (truly relevant documents) were returned (true
positives). As in the case of the ROC curve, there is a natural tradeoff between precision and
recall which is called the precision-recall tradeoff curve. (See Fig. 6(b).)

Confusion Matrix

When there are more than two classes, it is common to output a confusion matrix. The rows
indicate the true labels of the data, while the columns indicate the predicted labels. Thus, the

14

number Nij indicates the number of items of class j in the dataset that were predicted to be of
class i. Obviously, a good classifier will have large entries on the diagonal and smaller entries
off diagonal. But the confusion matrix may be useful in analysing the discrepancies in greater
detail.

Actual Labels
Prediction 1 2 · · · K

1 N11 N12 · · · N1K

2 N21 N22 · · · N2K
...

...
...

. . .
...

K NK1 NK2 · · · NKK

References

Erin L Allwein, Robert E Schapire, and Yoram Singer. Reducing multiclass to binary: A unifying
approach for margin classifiers. Journal of machine learning research, 1(Dec):113–141, 2000.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

Kevin P. Murphy. Machine Learning : A Probabilistic Perspective. MIT Press, 2012.

Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cambridge
university press, 2004.

15

