
Machine Learning - Michaelmas Term 2017

Notes : Information Theory Basics

Lecturers: Christoph Haase & Varun Kanade

1 Information, Entropy, KL Divergence

We’ll briefly discuss the connections between some of the concepts introduced in this course
to those in information theory. Obviously, give that the goal of machine learning is to extract
meaninful patterns out of data, it is no surprise that there are deep connections between machine
learning and information theory. Exploring these in detail is beyond the scope of this course,
but the interested student may refer to the book by MacKay (2003) or Jaynes (2003).

1.1 Entropy

Let X be a random variable that takes values from a finite set according to distribution p.1

Then then entropy of X is defined as

H(X) = −
∑
x

p(x) log p(x) (1)

The entropy is a measure of uncertainty of a random variable. If X takes values over a finite set
of size n, then X has maximum entropy if it is distributed according to the uniform distribution
over these n elements. It has minimum entropy if all the probability mass is concentrated on
one of these elements, i.e., in effect it is not a random variable at all, but a constant.

Let us focus on the case of Bernoulli random variables. A Bernoulli random variable is
defined by a parameter θ ∈ [0, 1] and takes value 1 with probability θ and 0 with probability
1− θ. This can be expressed succintly as

p(x | θ) = θx(1− θ)1−x

In this case, let us write the entropy in terms of the parameter θ and use logarithm base 2 for
convenience.

H(X) = −θ log2(θ)− (1− θ) log2(1− θ)

Figure 1 plots the entropy as a function of θ. We see that the entropy has a maximum value
of 1 for θ = 1/2 and minimum value of 0 at θ ∈ {0, 1}. One way to think of entropy is how much
information is obtained when the outcome of an experiment is revealed. For example, if Alice
has an unbiased coin, then if she tosses it and reports the outcome we get one bit of information.
On the other hand if she has a coin that always lands on heads, we get no additional information
by being told the outcome of the coin toss, because it was something we could have predicted
ourselves with complete certainty!

1.2 Kullback-Leibler Divergence

Let p and q be distributions over some finite set and suppose that the support of p is contained
in the suport of q.1 The Kullback-Leibler (or KL) Divergence between two distributions p and

1This can be extended to continuous-valued random variables by using the integral instead of the sum and
replacing the probability mass function by the density function.
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Figure 1: Entropy of the Bernoulli random variable as a function of θ

q is defined as follows

KL(p‖q) =
∑
x

p(x) log

(
p(x)

q(x)

)
=
∑
x

p(x) log(p(x))−
∑
x

p(x) log(q(x)) = −H(p) +H(p, q)

HereH(p) = −
∑
x

p(x) log p(x) is the entropy of the distribution p andH(p, q) = −
∑
x

p(x) log q(x)

is called the cross-entropy. The cross entropy accounts of the expected number of bits required
to encode an observation from p if the encoding scheme was based on q. Thus, the KL-divergence
KL(p‖q) gives the expected excess bits required to encode an observation from p if the encoding
scheme was based on q.

The KL divergence satisfies the following two properties:

1. KL(p‖q) ≥ 0

2. KL(p‖q) = 0 if and only if p = q

It is worth mentioning that the KL-divergence is not a distance; in particular, it is not
symmetric. For example, even when the support of p and q is the same, so that both KL(p‖q)
and KL(q‖p) are defined, they need not be equal.

Relation to Maximum Likelihood

Let us now see how the maximum likelihood estimate relates to these notions from information
theory. Suppose we get data x1, . . . xN from some unknown distribution p (not necessarily of
any particular parametric form). However, we wish to fit a distribution that does have some
parametric form (say for example Gaussian) that best explains the data. In particular, we
will derive the maximum likelihood estimate for the parameters of distributions of a certain
parametric form.

Figure 2 shows the actual generating distribution (in thick red). It also shows three possible
Gaussian distributions with different means and variances (dotted). Suppose, we want to find
maximum likelihood estimate for these parameters.

The mathematical derivation below is more general. It just assumes that the family of
distributions we consider are parameterized by some parameters θ. In particular, q(· | θ) is the
distribution that we use to model the data and we derive the maximum likelihood estimate for
θ.
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Figure 2: Maximum Likelihood Estimates and KL-divergence: The data is generated according
to the distribution shown by the thick red line. The figure also shows three possible Gaus-
sian distributions (dashed). The goal is to find the Gaussian distribution that maximises the
likelihood of the observed data.

θ̂ML = argmax
θ

N∏
i=1

q(xi | θ)

= argmax
θ

N∑
i=1

log(q(xi | θ))

= argmax
θ

1

N

N∑
i=1

log(q(xi | θ))−
1

N

N∑
i=1

log(p(xi)) (2)

= argmin
θ

1

N

N∑
i=1

log

(
p(xi)

q(xi | θ)

)
(3)

−→
N→∞

argmin
θ

∫
log

(
p(x)

q(x|θ)

)
p(x)dx = KL(p‖qθ) (4)

Above in Step (2) we replace the sum by the average and added an extra term that does
not depend on θ, neither of these operations affects the argmax; in Step (3), we switched the
signs and hence changed the argmax to argmin; finally, Step (4) states that in the limit of
getting infinite quantities of data, where xi ∼ p, the average can be replaced by the expectation
under the distribution p. This last term is nothing but the KL-divergence KL(p‖qθ). Thus,
the maximum likelihood estimate can be viewed as finding parameters (from some family of
distributions) that minimises the KL-divergence between the true distribution generating the
data and the modelled distribution from this family. Alternatively, the MLE can be viewed
as finding the distribution from a parametric family that has least KL-divergence between the
empirical distribution over the data and this particular parametric distribution.

Remark 1. This section covered somewhat advanced topics and is not examinable. It is intro-
duced to show connections between machine learning methods and information theory.
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