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Practical 2 : Generative and Discriminative Models

In this practical, we’ll compare the Naïve Bayes Classifier and Logistic Regression on two different
datasets. As part of the practical you should briefly read the following paper:

On Discriminative vs. Generative classifiers: A comparison of logistic regression
and naive Bayes
Andrew Y. Ng and Michael I. Jordan
Advances in Neural Information Processing Systems (NIPS) 2001.
Paper available here

You should read the Introduction and the Experiments section. The goal in this practical is
to qualitatively reproduce some of the experimental results in this paper. You are strongly
encouraged to read the rest of the paper, which is rather short and straightforward to read,
though some of you may want to skip the formal proofs.

Naïve Bayes Classifier

You should implement a Naïve Bayes Classifier directy in python. To keep your code tidy, we
recommend implementing it as a class. Make sure that your classifier can handle at least binary
and real-valued features and an arbitrary number of class labels. Suppose the data has 3 different
features, the first and third being binary and the second real-valued, and that there are 4 classes.
Write an implementation that you can initialise as follows:

nbc = NBC(feature_types=['b', 'r', 'b'], num_classes=4)

Optional: Also add support to use multivariate featurs, i.e., features that make take some K
different values. Note that K may be different for different features.

Along the lines of classifiers provided in sklearn, you want to implement two more functions,
fit and predict. The fit function should estimate all the parameters of the NBC. You should
model all binary features as Bernoulli random variables and all real-valued features as univariate
Gaussians. You also need to estimate the class probabilities πc = p(y = c). The predict
function should compute the class conditional probabilities for the new inputs on all classes and
then return the class that has the largest one.

Implementation Issues

• Remember to do all the calculations in log space to avoid running into underflow issues.
• Although for the two datasets required for this practical, we’ve used class labels 0, 1, . . . , C−

1, try to make your implementation general enough to handle arbitrary class labels (not
even necessarily integers)
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• As far as possible use matrix operations. So assume that Xtrain, ytrain, Xtest will all
be numpy arrays. Try and minimise your use of python loops. (In general, looping over
classes is OK, but looping over data is probably not a good idea.)

• You want to ensure that the estimates for the parameter for the Bernoulli random variables
is never exactly 0 or 1. For this reason you should consider using Laplace smoothing (wiki).
Also, the variance parameter for Gaussian distributions should never be exactly 0, so in
case your calculated variance is 0, you may want to set it to a small value such as 1e− 6.
Note that this is essential to ensure that your code never encounters division by zero or
taking logarithms of 0 errors.

For training data Xtrain, ytrain and test data Xtest you should be able to run:

nbc.fit(Xtrain, ytrain)
yhat = nbc.predict(Xtest)
test_accuracy = np.mean(yhat == ytest)

Logistic Regression

For logistic regression, you should use the implementation in sklearn. Adding the following
line will import the LR model.

from sklearn.linear_model import LogisticRegression

Read the information provided on the following links to understand some details about how the
logistic regression model is implemented in scikit-learn.

• http://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
• http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.

html#sklearn.linear_model.LogisticRegression

Handin 1: In the lectures, we only formulated the negative log-likelihood for logistic regression
without adding any regularization term. As per the formulation used in the lectures, if you
wanted to add λwTw as a regularization to the negative log-likelihood of observing the data,
and set λ = 0.1, what value of C would you set in the sklearn implementation?

Comparing NBC and LR

Iris Dataset

You will now compare the performance of NBC and LR on two different datasets. The first is
the iris dataset. You can obtain this as follows:

from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris['data'], iris['target']
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There are three classes denoted by 0, 1, 2, which stand for setosa, versicolour and virginica, three
varieties of iris. There are four features, all real-valued, measurements of sepal length and width,
and petal length and width.

Congressional Voting Records Dataset

The second dataset you will use is voting records in the US House of Representatives in 1984.
The goal is to predict whether the representative is a Republican or Democrat. The original
dataset is available here:

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

For the purpose of this practical, we have put the data in numpy array format, as well as deleted
those records that had missing entries. This dataset is available on the course homepage (as
voting, not voting-full) and can be loaded as follows:

import cPickle as cp
import numpy as np

X, y = cp.load(open('voting.cPikcle', 'rb'))

A vote of yes is encoded as 1, no as 0. A Republican is 0 and a Democrat 1. However, these
particular encodings are only important to the extent they tell us that we need to use binary
features in NBC, don’t need to perform a one-hot encoding for LR, and are solving a binary
classification problem.

Experiments

For both datasets you’ll compare the classification error of the NBC and LR trained on increasingly
large training datasets. Because the datasets are so small, you should do this multiple times and
average the classification error. One run should look as follows:

• Shuffle the data, put 20% aside for testing.

N, D = X.shape
Ntrain = int(0.8 * N)
shuffler = np.random.permutation(N)
Xtrain = X[shuffler[:Ntrain]]
ytrain = y[shuffler[:Ntrain]]
Xtest = X[shuffler[Ntrain:]]
ytest = y[shuffler[Ntrain:]]

• Train 10 classifiers, where the kth classifier is trained using 10k% of the training data. For
each classifier store the classification error on the test set.
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You may want to repeat this with at least 200 random permutations (possibly as large as 1000)
to average out the test error across the runs. In the end, you’ll get average test errors as a
function of the size of the training data. Plot these curves for NBC and LR on the two datasets.

Handin 2 Include the plots of the two curves in your report.

Optional

Missing Values for Voting Dataset

You may want to use the full voting dataset and repeat the above experiments. The full dataset
is available in numpy array format on the course webpage as voting-full. Any missing value
in the voting record is indicated by 2. For Naïve Bayes, we have seen how missing values can be
handled in a principled manner. For LR you may experiment with different options, such as
using the mean value of the feature, always using 0 (for missing values), or allowing ‘unknown’
to be a legitimate feature value. In the last case, you will have to use one-hot encoding to encode
the three possible values for each feature.

Other Datasets

There are other datasets used in the paper. Some with missing values, some without. Download
them from the UCI website and run the same procedure on them. You will also have to put
them in numpy array format. The code for doing this in the case of voting is provided on the
course website in the hope that it may be useful for other datasets. The experiments reported
in the paper never combine discrete and real-valued features, but you may want to test what
happens when you do.
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