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Problem Sheet 2

1 Maximum Likelihood Estimation of σ

Fix the input datapoints x1, . . . ,xN , we will not consider these as being generated by a random
process. Let w and σ be the parameters defining the linear model with Gaussian noise, i.e.,

yi ∼ N (xT
i w, σ

2). (1.1)

In class we showed that the maximum likelihood estimate for w is the same as the least square
estimator, wML = (XTX)−1XTy. Show that the MLE for σ2 is given by

σ2ML =
1

N
(y −XwML)T(y −XwML). (1.2)

2 Centering and Ridge Regression

Assume that 1
N

∑N
i=1 xi = 0, i.e., the data is centered. (In this question we will treat the

constant term separately, as centering this would give us a column of 0s.) Let us denote the
parameter for the leading constant term as b (for “bias”). So the linear model is ŷ = b+ xTw.
Consider minimizing the ridge objective:

Lridge(w, b) = (Xw + b1− y)T(Xw + b1− y) + λwTw (2.1)

Here 1 is the vector of all ones and note that b2 is not regularized. Show that if b̂ and ŵ
are the resulting solutions obtained by minimising the above objective, then

b̂ =
1

N

N∑
i=1

yi

ŵ = (XTX + λID)−1XTy

What happens if you also center y?

3 Bias of the Least Squared Estimator

Suppose that the data D = 〈(xi, yi)〉Ni=1 is truly generated from a linear model, i.e.,

E
[
y | x,w∗

]
= xTw∗ (3.1)

for some fixed (but unknown) parameter vector w∗. Recall that the least squares estimator is

ŵLS = (XTX)−1XTy. (3.2)
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1. Assume that x1, . . . ,xN are fixed and that XTX is invertible. You can think of the data
D as a random variable (because of the possible noise in the yis). Thus, ŵLS(D) is itself
a random variable. Show that the expectation of the estimator ŵLS(D) (with respect to
D) is w∗. Such an estimator is called an unbiased estimator as its expectation equals the
true parameter value.

2. Now suppose we have some other estimator ŵ which may not be unbiased. The bias is
defined as

Bias(ŵ) = ‖E
D

[
ŵ(D)

]
−w∗‖. (3.3)

Thus, the bias is the Euclidean distance between the expectation of the estimator and the
true parameter. Suppose you are interested in minimizing the squared distance between
the estimated parameters and true parameters, i.e., to minimize ‖ŵ(D) − w∗‖2. Show
that the expected (with respect to D) squared distance can be decomposed as follows:

E
D

[
‖ŵ(D)−w∗‖2

]
= ‖E

D

[
ŵ(D)

]
−w∗‖2 + E

D

[
‖ŵ(D)− E

D

[
ŵ(D)

]
‖2
]

(3.4)

The first term above is just the squared bias and the second term above is the variance
of the estimator. Thus, while being unbiased looks like a natural property to demand of
estimators, it might sometimes be preferable to have a biased estimator if it has a much
lower variance. This is what ridge regression or LASSO does.

4 Maximum Likelihood and Model Selection

Let the random variable x ∈ {0, 1} model the outcome of an experiment, such that the event
x = 1 occurs with probability θ1. Suppose that someone else observes the experiment and
reports to you the outcome, y. But this person is unreliable and only reports the result correctly
with probability θ2. That is, p(y | x, θ2) is given by

y = 0 y = 1

x = 0 θ2 1− θ2
x = 1 1− θ2 θ2

Assume that θ2 is independent of x and θ1.

1. Write down the joint probability distribution p(x, y | θ) as a 2 × 2 table, in terms of
θ = (θ1, θ2).

2. Given the following dataset: x = (1, 1, 0, 1, 1, 0, 0), y = (1, 0, 0, 0, 1, 0, 1). What are the nu-
merical values of the MLEs for θ1 and θ2? What is the numerical value p(D | θ̂,M2) where
M2 denotes this 2-parameter model? Justify your answer by including the derivations.

3. Now consider a model with 4 parameters, θ = (θ0,0, θ0,1, θ1,0, θ1,1), representing p(x, y | θ) =
θx,y. (Only 3 of these parameters are free to vary, since they must sum to one.) What is

the MLE of θ? What is p(D | θ̂,M4) where M4 denotes this 4-parameter model?
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4. Suppose we are not sure which model is correct. We compute the leave-one-out cross-
validated log-likelihood of the 2-parameter model and the 4-parameter model as follows:

L(M) =

N∑
i=1

log p(xi, yi | M, θ̂(D−i))

and θ̂(D−i) denotes the MLE computed on D excluding the ith observation. Which model
will CV pick and why?
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