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About this lecture

No Machine Learning without rigorous mathematics

v

This should be the most boring lecture

v

» Serves as reference for notation used throughout the course

If there are any holes make sure to fill them sooner than later

\4

Attempt Problem Sheet 0 to see where you are standing

v



Outline

Today's lecture

» Linear algebra
» Calculus

» Probability theory



Linear algebra
We will mostly work in the real vector space:
» Scalar: single numberr € R
» Vector: array of numbers x = (z1,...,zp) € R” of dimension D
» Matrix: two-dimensional array A € R™*" written as
ai,1 airz2 -+ QAln
az1 Gz - Gom

A =

am,1 am,2 e Am,n



Linear algebra
We will mostly work in the real vector space:

» Scalar: single numberr € R
» Vector: array of numbers x = (z1,...,zp) € R” of dimension D

» Matrix: two-dimensional array A € R™*" written as

ai,1 air2 - QAln

a1 a2 o A2n
A =

am,1 am,2 e Am,n

vector x is a RP>*! matrix

A, ; denotes a; ;

A, . denotes i-th row

A.; denotes i-th column

AT isthe transpose of A such that (AT); ; = A, ;
symmetricif A = AT

A € R"*"isdiagonalif A; ; = 0foralli # j

I, isthe n x n diagonal matrix s.t. (I,.);; = 1
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Operations on matrices

» Addition: C = A + Bs.t.C;; = A;; + B, ; with A, B,C € R™*"
» associative: A+ (B+C)=(A+B)+C
» commutative:A+B =B+ A
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Operations on matrices

» Addition:C=A +Bs.t.C,; = A;; + B, ; with A/ B, C e R™*"
» associative: A+ (B+C)=(A+B)+C
» commutative: A+ B =B+ A

» Scalar multiplication:B=7r-Ast. B, ;=7 A, ;
» Multiplication: C = A - Bs.t.

Cij= Y Aix By,

1<k<n

with A € R™*" B € R"*? C € R™*?

» associative:A-(B-C)=(A-B)-C
not commutative in genera A-B # B - A
distributive wrt. addition:A- B+ C)=A-B+A-C
(A-B)'=BT-AT

| 3
»
| 4
» v and w are orthogonalifv' - w =0



Eigenvectors, eigenvalues, determinant, linear independence, inverses
» v € R™is an eigenvector of A € R™*™ with eigenvalue X € R if
A-v=X\-v

» A is positive (negative) definite if all eigenvalues are strictly greater
(smaller) than zero
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Eigenvectors, eigenvalues, determinant, linear independence, inverses

» v € R™is an eigenvector of A € R™*™ with eigenvalue X € R if
A-v=X\v

v

A is positive (negative) definite if all eigenvalues are strictly greater
(smaller) than zero

» Determinant of A € R™*™ with eigenvectors \1,..., A\, is
det(A) = A1 - Ao+ An
» v(D . v c RP are linearly independent if there are no

r1,...,mn € R\ {0} such that

Z ri~v(i):0

1<i<n

» A € R" " invertible if thereis A™! € R"*" s.t.
A-AT=A1 A=1,



Eigenvectors, eigenvalues, determinant, linear independence, inverses

» v € R™is an eigenvector of A € R™*™ with eigenvalue X € R if
A-v=X\v

v

A is positive (negative) definite if all eigenvalues are strictly greater
(smaller) than zero

» Determinant of A € R™*™ with eigenvectors \1,..., A\, is
det(A) = A1 - Ao+ An
» v(D . v c RP are linearly independent if there are no

r1,...,mn € R\ {0} such that

Z rzwv(i):O

1<i<n

» A € R" " invertible if thereis A™! € R"*" s.t.
A-AT=A1 A=1,

v

Note that:
» A isinvertible if rows of A are linearly independent
» equivalently if det(A) # 0
» IF Ainvertible then A - x = b hassolutionx=A"!-b



Vector norms

Vector norms allow us to talk about the length of vectors
» The L” norm of v = (v1,...,vp) € R” is given by
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Vector norms

Vector norms allow us to talk about the length of vectors
» The L” norm of v = (v1,...,vp) € R” is given by

1/p

Vil ={ > ol

» Properties of L? (which actually hold for any norm):
> ||v]l, =0impliesv =0
> v+ wlp < [Ivllp + [[wllp
> |lr-vllp, =1r|- ||Vl forallr e R

» Popular norms:
» Manhattan norm L*
» Eucledian norm L2
» Maximum norm L where ||v|lcoc = maxi<i<p |vi

» Vectors v,w € R” are orthonormal if v and w are orthogonal and
[vll2 = [lwll2 =1



Calculus

Functions of one variable f : R —+ R

» First derivative:

ey = L) — fim L@ — f(@)
f@) = o f@) = Jim h
/' (z*) = 0 means that f(z*) is a critical or stationary point
Can be a local minimum, a local maximum, or a saddle point
Global minima are local minima z* with smallest f(z*)
Second derivative test to (partially) decide nature of critical point

vVYyVvyy



Calculus

Functions of one variable f : R —+ R

» First derivative:

ey = L) — fim L@ — f(@)
f@) = o f@) = Jim h
/' (z*) = 0 means that f(z*) is a critical or stationary point
Can be a local minimum, a local maximum, or a saddle point
Global minima are local minima z* with smallest f(z*)
Second derivative test to (partially) decide nature of critical point

vVYyVvyy

» Differentiation rules:

d n __ o n—1 i T _ T i _ 1
e =N 3z =0 In(a) e log,(z) = = (@)
(f+9)=Ff+g (f9)=fg+f4d

» Chainrule:if f = h(g) then f' =h'(g) - ¢’



Calculus
Functions of multiple variables f : R — R

» Partial derivative of f(z1,...,xm) indirection z; ata = (a1, ..., am):
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Calculus

Functions of multiple variables f : R — R

» Partial derivative of f(z1,...,xm) indirection z; ata = (a1, ..., am):
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» Gradient (assuming f is differentiable everywhere):

_(9f of  9f _ (91 of
Vxf = (811’8@"”’ p. st. Vif(a) = o (a),..., me(a)

» Points in direction of steepest ascent
» Critical point if V. f(a) =0



Calculus

Functions of multiple variables f : R — R

» Partial derivative of f(z1,...,xm) indirection z; ata = (a1, ..., am):
0 o flar,. o ai+hy oo am) — flar, .00, am)
3z, (@ = fim D
» Gradient (assuming f is differentiable everywhere):
of

vxf:(af 9 ﬁ) s.t. vxf(a)z(ﬁ(a),...

Ox1’ Oxe’ 7 O ox1

» Points in direction of steepest ascent
» Critical point if V. f(a) =0

Functions of multiple variables to vectors f : R — R™:
» fgivenasf = (f1,...,fn)with f; :R™ - R

» Jacobian J of f is an n x m matrix such that

_ 9f
Tii =

P 0T,



Calculus
Second-order derivatives of f : R™ — R:
» Hessian is square matrix consisting of all second-order derivatives:
82
B 8m¢8x]~ f(x)

» Symmetric (at continuous points)

» IFH(f)(a) positive (negative) definite then critical point a is local
minimum (maximum)

» Second derivative test may be inconclusive

H(f)(x)i,;
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Calculus
Second-order derivatives of f : R™ — R:
» Hessian is square matrix consisting of all second-order derivatives:
82
B 8m¢8x]~ f(x)

» Symmetric (at continuous points)

» IFH(f)(a) positive (negative) definite then critical point a is local
minimum (maximum)

» Second derivative test may be inconclusive

H(f)(x)i,;

Useful differentiation rules:

Vx(ch

)=c
Vi(x'A-x) = Ax+ A'x (= 2Ax for symmetric A)
Vx(f-9)=f Vxg+g-Vxf
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Calculus
Second-order derivatives of f : R™ — R:
» Hessian is square matrix consisting of all second-order derivatives:
82
8m¢8x]~ f(x)

» Symmetric (at continuous points)

» IFH(f)(a) positive (negative) definite then critical point a is local
minimum (maximum)

» Second derivative test may be inconclusive

H(f)(x)i; =

Useful differentiation rules:

Vi(e'x)=c¢
Vi ( A-x)=Ax+Ax (= 2Ax For symmetric A)
Vx(f4+9) = VxS + Vxg
Vxlf-9)=F-Vxg+g-Vxf

See http://en.wikipedia.org/wiki/Matrix_calculus for many more useful
rules, and use them!


http://en.wikipedia.org/wiki/Matrix_calculus

Chain rule in higher dimensions

Lety = g(x),z = f(y)forx e R™andy € R™:

Oy,
83&1 Z Jy; axi

sz:J;-Vyz: Oy

dx

-Vyz



Chain rule in higher dimensions
Lety = g(x),z = f(y)forx e R™andy € R™:

Oy,
83&1 Z Jy; " Oz

oy
ox

Vxz=Jdy - Vyz= 2> -Vyz

Example
Letg(z,y) = (2*,y), f(s,t) = (s +t)>and z = f(g(z,y)). Then
0z 0z O0s 0z Ot

—_— e — — J— . . . 2 . . = 2
3% = 3s 3. T ot Ba =2-(®4y)-1-2-24+2 (2" +y)-1-0=4x(z” +v)

T 2.2 0

=]
Vyz=(2- (2> +y),2- (2> +y))
Vez=(d-z-(2*+y),2-(2° +v))



Probability theory

Probability space:

» Consists of sample space S and a probability function p : P(S) — [0, 1]
assigning a probability to every event

» FulFills axioms of probability:
» p(0) =0andp(S) =1
» For mutually exclusive events A;, Ao, ...

P (U Ai) = Zp(Ai)



Probability theory

Probability space:

» Consists of sample space S and a probability function p : P(S) —

assigning a probability to every event

» FulFills axioms of probability:

» p(0) =0andp(S) =1
» For mutually exclusive events A;, Ao, ...

D (G Az‘) = iP(A

Trivial properties:
> p(A) =1 p(A)
» If A C Bthenp(A) < p(B
> p(AU B) =p(A) +p(B) — p(AN B)

v

[0,1]



Probability theory

Conditional probability:
» Given events A, B with p(B) > 0, conditional probability of A given B is

p(ANB)
p(B)

» p(A)is prior, and p(A|B) is posterior probability of A

p(A|B) =

» Law of total probability: Given partition A4, ..., A, of S with p(4;) > 0,
p(B) =Y _p(B|A:) - p(As)
i=1

» Bayes' rule:
p(B|A) - p(A)

p(41B) = PE



Probability Theory
Random variable (r.v.):
» Function from sample space to some numeric domain (usually R)
» p(X = x) denotes probability of event {s € S : X(s) = z}

» Write X ~ p(z) to specify probability distribution of X
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» p(X = z) denotes probability of event {s € S : X(s) = z}
» Write X ~ p(z) to specify probability distribution of X
Discrete random variables:
» Discrete if there are a1, as, . .. such that p(X = a; for some j) =1

» Probability mass function (PMF) px given by px (z) = p(X = z) giving
distribution of X

» Cumulative distribution function (CDF) maps z to p(X < z)



Probability Theory

Random variable (r.v.):
» Function from sample space to some numeric domain (usually R)
» p(X = z) denotes probability of event {s € S : X(s) = z}
» Write X ~ p(z) to specify probability distribution of X
Discrete random variables:
» Discrete if there are a1, as, . .. such that p(X = a; for some j) =1

» Probability mass function (PMF) px given by px (z) = p(X = z) giving
distribution of X

» Cumulative distribution function (CDF) maps z to p(X < z)

Continuous random variables:

» Continuous if CDF is differentiable

» Probability density function (PDF) p(z) is derivative of CDF giving
distribution of X



Probability Theory

Joint probability distributions:

» Natural generalisation to vectors of random variables giving joint
probability distributions, e.g., p(X = z,Y = y)

» Marginal probability distribution: Given p(X,Y"), obtain p(X) via
PX =)= p(X =Y =y resp. pla) = [ pleu)dy
Y

» Conditional probabilities: Assuming p(X = z) > 0,

p(Y =y, X =x)

p(Y =y | X =)= P

» Chain rule of conditional probability:

P, ™) = p(x D) T p(x®@ | x D, x6Y)

1=2



Probability Theory
Expected value of random variable w.r.t. f:

> Ex~p[f(z)] =3, p(x)- f(z) (For discrete r.v.’s)
> Ex~p[f(z)] = [ p(z) - f(z) dz (For continuous r.v.’s)

» Linearity of expectation:
Exlo- f(z) + 8- 9(2)] = o Ex[f(x)] + 8 - Ex[g(z)]



Probability Theory
Expected value of random variable w.r.t. f:

> Ex~p[f(z)] =3, p(x)- f(z) (For discrete r.v.’s)
> Ex~p[f(z)] = [ p(z) - f(z) dz (For continuous r.v.’s)
» Linearity of expectation:
Ex[a- f(z) + 8- g(2)] = a-Ex[f(z)] + 8- Ex[g(x)]

Properties of random variables:

» Variance captures how much values of probability distribution vary on
average if randomly drawn:

Var(f(2)) = E[(f(x) — E[f(2)])*]
» Standard deviation is square root of variance
SD(f(X)) = v/Var(f(x))
» Covariance generalises variance to two r.v.'s:
Cov(f(z),9(y)) = E[(f (=) — E[f(z)]) - (9(y) — Elg(y)])]
» Covariance matrix X generalises covariance to multiple r.v.'s z;:
3 = Cov(fi(zi), fi(z;))



Probability Theory

Well-known discrete probability distributions:

» Bernoulli:
» Parameter: ¢ € [0, 1]
» PMF:p(X =1) = ¢, p(X =0) =
> E[X] = ¢; Var(X) =¢- (1 - ¢)



Probability Theory

Well-known discrete probability distributions:

» Bernoulli:
» Parameter: ¢ € [0, 1]
» PMF:p(X =1) = ¢, p(X =0)
> E[X] = ¢; Var(X) =¢- (1 - ¢)

» Binomial distribution:
» Parameters: qb €lo,1],n e N\{O}
» PMF: p(X ( ) )t k
» E[X]=mn- ¢Var( )—n ¢ ( ¢)



Probability Theory

Well-known continuous probability distributions:

» Normal distribution:
» Parameters: y, o

» PDF:
. 2y 1 7i IPAY
Nwip o) =[5 exp( 53 (@ u))

» E[X] = y; Var(X) = o>




Probability Theory

» Multivariate normal distribution:
» Parameters: k, u, X positive semi-definite
» PDF:

1 1
N(X; ) = mexp (—*

» EX] = Var(X) =X

=05 )




Probability Theory

Well-known continuous probability distributions:

» Laplace distribution:

» Parameters: ;1, v2
» PDF:

1 T —
Lap(z; p,v) = 25 P (—7| m)

5
» E[X] = u; Var(X) = 22




Next Time

» Supervised Machine Learning: Linear regression

20



