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About this lecture

I No Machine Learning without rigorous mathematics

I This should be the most boring lecture

I Serves as reference for notation used throughout the course

I If there are any holes make sure to fill them sooner than later

I Attempt Problem Sheet 0 to see where you are standing
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Outline

Today’s lecture

I Linear algebra

I Calculus

I Probability theory
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Linear algebra

We will mostly work in the real vector space:

I Scalar: single number r ∈ R

I Vector: array of numbers x = (x1, . . . , xD) ∈ RD of dimensionD

I Matrix: two-dimensional array A ∈ Rm×n written as

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n



I vector x is a RD×1 matrix
I Ai,j denotes ai,j
I Ai,: denotes i-th row
I A:,i denotes i-th column
I AT is the transpose of A such that (AT)i,j = Aj,i

I symmetric if A = AT

I A ∈ Rn×n is diagonal if Ai,j = 0 for all i 6= j
I In is the n× n diagonal matrix s.t. (In)i,i = 1
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Operations on matrices

I Addition: C = A + B s.t. Ci,j = Ai,j + Bi,j with A,B,C ∈ Rm×n

I associative: A + (B + C) = (A + B) + C
I commutative: A + B = B + A

I Scalar multiplication: B = r ·A s.t. Bi,j = r ·Ai,j

I Multiplication: C = A ·B s.t.

Ci,j =
∑

1≤k≤n

Ai,k ·Bk,j

with A ∈ Rm×n,B ∈ Rn×p,C ∈ Rm×p

I associative: A · (B ·C) = (A ·B) ·C
I not commutative in general: A ·B 6= B ·A
I distributive wrt. addition: A · (B + C) = A ·B + A ·C
I (A ·B)T = BT ·AT

I v and w are orthogonal if vT ·w = 0

4



Operations on matrices

I Addition: C = A + B s.t. Ci,j = Ai,j + Bi,j with A,B,C ∈ Rm×n

I associative: A + (B + C) = (A + B) + C
I commutative: A + B = B + A

I Scalar multiplication: B = r ·A s.t. Bi,j = r ·Ai,j

I Multiplication: C = A ·B s.t.

Ci,j =
∑

1≤k≤n

Ai,k ·Bk,j

with A ∈ Rm×n,B ∈ Rn×p,C ∈ Rm×p

I associative: A · (B ·C) = (A ·B) ·C
I not commutative in general: A ·B 6= B ·A
I distributive wrt. addition: A · (B + C) = A ·B + A ·C
I (A ·B)T = BT ·AT

I v and w are orthogonal if vT ·w = 0

4



Operations on matrices

I Addition: C = A + B s.t. Ci,j = Ai,j + Bi,j with A,B,C ∈ Rm×n

I associative: A + (B + C) = (A + B) + C
I commutative: A + B = B + A

I Scalar multiplication: B = r ·A s.t. Bi,j = r ·Ai,j

I Multiplication: C = A ·B s.t.

Ci,j =
∑

1≤k≤n

Ai,k ·Bk,j

with A ∈ Rm×n,B ∈ Rn×p,C ∈ Rm×p

I associative: A · (B ·C) = (A ·B) ·C
I not commutative in general: A ·B 6= B ·A
I distributive wrt. addition: A · (B + C) = A ·B + A ·C
I (A ·B)T = BT ·AT

I v and w are orthogonal if vT ·w = 0

4



Eigenvectors, eigenvalues, determinant, linear independence, inverses
I v ∈ Rn is an eigenvector of A ∈ Rn×n with eigenvalue λ ∈ R if

A · v = λ · v

I A is positive (negative) definite if all eigenvalues are strictly greater
(smaller) than zero

I Determinant of A ∈ Rn×n with eigenvectors λ1, . . . , λn is

det(A) = λ1 · λ2 · · ·λn

I v(1), . . . ,v(n) ∈ RD are linearly independent if there are no
r1, . . . , rn ∈ R \ {0} such that∑

1≤i≤n

ri · v(i) = 0

I A ∈ Rn×n invertible if there is A−1 ∈ Rn×n s.t.

A ·A−1 = A−1 ·A = In

I Note that:
I A is invertible if rows of A are linearly independent
I equivalently if det(A) 6= 0
I If A invertible then A · x = b has solution x = A−1 · b
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Vector norms

Vector norms allow us to talk about the length of vectors

I The Lp norm of v = (v1, . . . , vD) ∈ RD is given by

‖v‖p =

 ∑
1≤i≤D

|vi|p
1/p

I Properties of Lp (which actually hold for any norm):
I ‖v‖p = 0 implies v = 0
I ‖v + w‖p ≤ ‖v‖p + ‖w‖p
I ‖r · v‖p = |r| · ‖v‖p for all r ∈ R

I Popular norms:
I Manhattan norm L1

I Eucledian norm L2

I Maximum norm L∞ where ‖v‖∞ = max1≤i≤D |vi|

I Vectors v,w ∈ RD are orthonormal if v and w are orthogonal and
‖v‖2 = ‖w‖2 = 1
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Calculus

Functions of one variable f : R→ R

I First derivative:

f ′(x) =
d

dx
f(x) = lim

h→0

f(x+ h)− f(x)
h

I f ′(x∗) = 0means that f(x∗) is a critical or stationary point
I Can be a local minimum, a local maximum, or a saddle point
I Global minima are local minima x∗ with smallest f(x∗)
I Second derivative test to (partially) decide nature of critical point

I Differentiation rules:

d

dx
xn = n · xn−1 d

dx
ax = ax · ln(a) d

dx
loga(x) =

1

x · ln(a)

(f + g)′ = f ′ + g′ (f · g)′ = f ′ · g + f · g′

I Chain rule: if f = h(g) then f ′ = h′(g) · g′
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Calculus

Functions of multiple variables f : Rm → R

I Partial derivative of f(x1, . . . , xm) in direction xi at a = (a1, . . . , am):

∂

∂xi
f(a) = lim

h→0

f(a1, . . . , ai + h, . . . , am)− f(a1, . . . , ai, . . . , am)

h

I Gradient (assuming f is differentiable everywhere):

∇xf =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xm

)
s.t. ∇xf(a) =

(
∂f

∂x1
(a), . . . ,

∂f

∂xm
(a)

)
I Points in direction of steepest ascent
I Critical point if∇xf(a) = 0

Functions of multiple variables to vectors f : Rm → Rn:

I f given as f = (f1, . . . , fn)with fi : Rm → R

I Jacobian J of f is an n×mmatrix such that

Ji,j =
∂fi
∂xj
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Calculus

Second-order derivatives of f : Rm → R:

I Hessian is square matrix consisting of all second-order derivatives:

H(f)(x)i,j =
∂2

∂xi∂xj
f(x)

I Symmetric (at continuous points)
I If H(f)(a) positive (negative) definite then critical point a is local

minimum (maximum)
I Second derivative test may be inconclusive

Useful differentiation rules:

∇x(c
Tx) = c

∇x(x
TA · x) = Ax + ATx (= 2Ax for symmetric A)

∇x(f + g) = ∇xf +∇xg

∇x(f · g) = f · ∇xg + g · ∇xf

See http://en.wikipedia.org/wiki/Matrix_calculus for many more useful
rules, and use them!
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Chain rule in higher dimensions

Let y = g(x), z = f(y) for x ∈ Rm and y ∈ Rn:

∂z

∂xi
=
∑
j

∂z

∂yj
· ∂yj
∂xi

∇xz = JT
g · ∇yz =

∂y

∂x
· ∇yz

Example
Let g(x, y) = (x2, y), f(s, t) = (s+ t)2 and z = f(g(x, y)). Then

∂z

∂x
=
∂z

∂s
· ∂s
∂x

+
∂z

∂t
· ∂t
∂x

= 2 · (x2 + y) · 1 · 2 · x+ 2 · (x2 + y) · 1 · 0 = 4x(x2 + y)

JT
g =

[
2 · x 0
0 1

]
∇yz = (2 · (x2 + y), 2 · (x2 + y))

∇xz = (4 · x · (x2 + y), 2 · (x2 + y))
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Probability theory

Probability space:

I Consists of sample space S and a probability function p : P(S)→ [0, 1]
assigning a probability to every event

I Fulfills axioms of probability:
I p(∅) = 0 and p(S) = 1
I For mutually exclusive eventsA1, A2, . . .

p

 ∞⋃
i=1

Ai

 =
∞∑
i=1

p(Ai)

Trivial properties:

I p(A) = 1− p(A)
I IfA ⊆ B then p(A) ≤ p(B)

I p(A ∪B) = p(A) + p(B)− p(A ∩B)
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Probability theory

Conditional probability:

I Given eventsA,B with p(B) > 0, conditional probability ofA givenB is

p(A|B) =
p(A ∩B)

p(B)

I p(A) is prior, and p(A|B) is posterior probability ofA

I Law of total probability: Given partitionA1, . . . , An of S with p(Ai) > 0,

p(B) =
n∑

i=1

p(B|Ai) · p(Ai)

I Bayes’ rule:

p(A|B) =
p(B|A) · p(A)

p(B)
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Probability Theory

Random variable (r.v.):

I Function from sample space to some numeric domain (usually R)

I p(X = x) denotes probability of event {s ∈ S : X(s) = x}

I WriteX ∼ p(x) to specify probability distribution ofX

Discrete random variables:

I Discrete if there are a1, a2, . . . such that p(X = aj for some j) = 1

I Probability mass function (PMF) pX given by pX(x) = p(X = x) giving
distribution ofX

I Cumulative distribution function (CDF) maps x to p(X ≤ x)

Continuous random variables:

I Continuous if CDF is differentiable

I Probability density function (PDF) p(x) is derivative of CDF giving
distribution ofX
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Probability Theory

Joint probability distributions:

I Natural generalisation to vectors of random variables giving joint
probability distributions, e.g., p(X = x, Y = y)

I Marginal probability distribution: Given p(X,Y ), obtain p(X) via

p(X = x) =
∑
y

p(X = x, Y = y) resp. p(x) =

∫
p(x, y) dy

I Conditional probabilities: Assuming p(X = x) > 0,

p(Y = y | X = x) =
p(Y = y,X = x)

p(X = x)

I Chain rule of conditional probability:

p(X(1), . . . , X(n)) = p(X(1)) ·
n∏

i=2

p(X(i) | X(1), . . . , X(i−1))
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Probability Theory
Expected value of random variable w.r.t. f :

I EX∼p[f(x)] =
∑

x p(x) · f(x) (for discrete r.v.’s)

I EX∼p[f(x)] =
∫
p(x) · f(x) dx (for continuous r.v.’s)

I Linearity of expectation:

EX [α · f(x) + β · g(x)] = α · EX [f(x)] + β · EX [g(x)]

Properties of random variables:
I Variance captures how much values of probability distribution vary on

average if randomly drawn:

Var(f(x)) = E[(f(x)− E[f(x)])2]

I Standard deviation is square root of variance

SD(f(X)) =
√

Var(f(x))

I Covariance generalises variance to two r.v.’s:

Cov(f(x), g(y)) = E[(f(x)− E[f(x)]) · (g(y)− E[g(y)])]

I Covariance matrix Σ generalises covariance to multiple r.v.’s xi:

Σi,j = Cov(fi(xi), fj(xj))
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Probability Theory

Well-known discrete probability distributions:

I Bernoulli:
I Parameter: φ ∈ [0, 1]
I PMF: p(X = 1) = φ, p(X = 0) = 1− φ;
I E[X] = φ;Var(X) = φ · (1− φ)

I Binomial distribution:
I Parameters: φ ∈ [0, 1], n ∈ N \ {0}
I PMF: p(X = k) =

(
n
k

)
· φk · (1− φ)n−k

I E[X] = n · φ;Var(X) = n · φ · (1− φ)
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Probability Theory

Well-known continuous probability distributions:

I Normal distribution:
I Parameters: µ, σ2

I PDF:

N (x;µ, σ2) =

√
1

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
I E[X] = µ;Var(X) = σ2

µ = 2µ = 0
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Probability Theory
I Multivariate normal distribution:

I Parameters: k, µ,Σ positive semi-definite
I PDF:

N (x;µ,Σ) =

√
1

(2π)k det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
I E[X] = µ;Var(X) = Σ
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Probability Theory

Well-known continuous probability distributions:

I Laplace distribution:
I Parameters: µ, γ2

I PDF:

Lap(x;µ, γ) =
1

2γ
exp

(
−|x− µ|

γ

)
I E[X] = µ;Var(X) = 2γ2
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Next Time

I Supervised Machine Learning: Linear regression
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