Machine Learning - MT 2017 2. Mathematical Basics

Christoph Haase

University of Oxford October 11, 2017

About this lecture

- No Machine Learning without rigorous mathematics
- This should be the most boring lecture
- Serves as reference for notation used throughout the course
- If there are any holes make sure to fill them sooner than later
- Attempt Problem Sheet 0 to see where you are standing

Outline

Today's lecture

- Linear algebra
- Calculus
- Probability theory

Linear algebra

We will mostly work in the real vector space:

- Scalar: single number $r \in \mathbb{R}$
- Vector: array of numbers $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right) \in \mathbb{R}^{D}$ of dimension D
- Matrix: two-dimensional array $\mathbf{A} \in \mathbb{R}^{m \times n}$ written as

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right]
$$

Linear algebra

We will mostly work in the real vector space:

- Scalar: single number $r \in \mathbb{R}$
- Vector: array of numbers $\mathbf{x}=\left(x_{1}, \ldots, x_{D}\right) \in \mathbb{R}^{D}$ of dimension D
- Matrix: two-dimensional array $\mathbf{A} \in \mathbb{R}^{m \times n}$ written as

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right]
$$

- vector \mathbf{x} is a $\mathbb{R}^{D \times 1}$ matrix
- $\mathbf{A}_{i, j}$ denotes $a_{i, j}$
- $\mathbf{A}_{i, \text { : }}$ denotes i-th row
- $\mathbf{A}_{:, i}$ denotes i-th column
- \mathbf{A}^{\top} is the transpose of \mathbf{A} such that $\left(\mathbf{A}^{\top}\right)_{i, j}=\mathbf{A}_{j, i}$
- symmetric if $\mathbf{A}=\mathbf{A}^{\top}$
- $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonal if $\mathbf{A}_{i, j}=0$ for all $i \neq j$
- \mathbf{I}_{n} is the $n \times n$ diagonal matrix s.t. $\left(\mathbf{I}_{n}\right)_{i, i}=1$

Operations on matrices

- Addition: $\mathbf{C}=\mathbf{A}+\mathbf{B}$ s.t. $\mathbf{C}_{i, j}=\mathbf{A}_{i, j}+\mathbf{B}_{i, j}$ with $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{R}^{m \times n}$
- associative: $\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}$
- commutative: $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$

Operations on matrices

- Addition: $\mathbf{C}=\mathbf{A}+\mathbf{B}$ s.t. $\mathbf{C}_{i, j}=\mathbf{A}_{i, j}+\mathbf{B}_{i, j}$ with $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{R}^{m \times n}$
- associative: $\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}$
- commutative: $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
- Scalar multiplication: $\mathbf{B}=r \cdot \mathbf{A}$ s.t. $\mathbf{B}_{i, j}=r \cdot \mathbf{A}_{i, j}$

Operations on matrices

- Addition: $\mathbf{C}=\mathbf{A}+\mathbf{B}$ s.t. $\mathbf{C}_{i, j}=\mathbf{A}_{i, j}+\mathbf{B}_{i, j}$ with $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathbb{R}^{m \times n}$
- associative: $\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}$
- commutative: $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
- Scalar multiplication: $\mathbf{B}=r \cdot \mathbf{A}$ s.t. $\mathbf{B}_{i, j}=r \cdot \mathbf{A}_{i, j}$
- Multiplication: $\mathbf{C}=\mathbf{A} \cdot \mathbf{B}$ s.t.

$$
\mathbf{C}_{i, j}=\sum_{1 \leq k \leq n} \mathbf{A}_{i, k} \cdot \mathbf{B}_{k, j}
$$

with $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}, \mathbf{C} \in \mathbb{R}^{m \times p}$

- associative: $\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C})=(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$
- not commutative in general: $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$
- distributive wrt. addition: $\mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}$
- $(\mathbf{A} \cdot \mathbf{B})^{\top}=\mathbf{B}^{\top} \cdot \mathbf{A}^{\top}$
- \mathbf{v} and \mathbf{w} are orthogonal if $\mathbf{v}^{\top} \cdot \mathbf{w}=0$

Eigenvectors, eigenvalues, determinant, linear independence, inverses

- $\mathbf{v} \in \mathbb{R}^{n}$ is an eigenvector of $\mathbf{A} \in \mathbb{R}^{n \times n}$ with eigenvalue $\lambda \in \mathbb{R}$ if $\mathbf{A} \cdot \mathbf{v}=\lambda \cdot \mathbf{v}$
- A is positive (negative) definite if all eigenvalues are strictly greater (smaller) than zero

Eigenvectors, eigenvalues, determinant, linear independence, inverses

- $\mathbf{v} \in \mathbb{R}^{n}$ is an eigenvector of $\mathbf{A} \in \mathbb{R}^{n \times n}$ with eigenvalue $\lambda \in \mathbb{R}$ if $\mathbf{A} \cdot \mathbf{v}=\lambda \cdot \mathbf{v}$
- A is positive (negative) definite if all eigenvalues are strictly greater (smaller) than zero
- Determinant of $\mathbf{A} \in \mathbb{R}^{n \times n}$ with eigenvectors $\lambda_{1}, \ldots, \lambda_{n}$ is

$$
\operatorname{det}(\mathbf{A})=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}
$$

Eigenvectors, eigenvalues, determinant, linear independence, inverses

- $\mathbf{v} \in \mathbb{R}^{n}$ is an eigenvector of $\mathbf{A} \in \mathbb{R}^{n \times n}$ with eigenvalue $\lambda \in \mathbb{R}$ if $\mathbf{A} \cdot \mathbf{v}=\lambda \cdot \mathbf{v}$
- A is positive (negative) definite if all eigenvalues are strictly greater (smaller) than zero
- Determinant of $\mathbf{A} \in \mathbb{R}^{n \times n}$ with eigenvectors $\lambda_{1}, \ldots, \lambda_{n}$ is

$$
\operatorname{det}(\mathbf{A})=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}
$$

- $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)} \in \mathbb{R}^{D}$ are linearly independent if there are no $r_{1}, \ldots, r_{n} \in \mathbb{R} \backslash\{0\}$ such that

$$
\sum_{1 \leq i \leq n} r_{i} \cdot \mathbf{v}^{(i)}=\mathbf{0}
$$

Eigenvectors, eigenvalues, determinant, linear independence, inverses

- $\mathbf{v} \in \mathbb{R}^{n}$ is an eigenvector of $\mathbf{A} \in \mathbb{R}^{n \times n}$ with eigenvalue $\lambda \in \mathbb{R}$ if $\mathbf{A} \cdot \mathbf{v}=\lambda \cdot \mathbf{v}$
- A is positive (negative) definite if all eigenvalues are strictly greater (smaller) than zero
- Determinant of $\mathbf{A} \in \mathbb{R}^{n \times n}$ with eigenvectors $\lambda_{1}, \ldots, \lambda_{n}$ is

$$
\operatorname{det}(\mathbf{A})=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}
$$

- $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)} \in \mathbb{R}^{D}$ are linearly independent if there are no $r_{1}, \ldots, r_{n} \in \mathbb{R} \backslash\{0\}$ such that

$$
\sum_{1 \leq i \leq n} r_{i} \cdot \mathbf{v}^{(i)}=\mathbf{0}
$$

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible if there is $\mathbf{A}^{-1} \in \mathbb{R}^{n \times n}$ s.t.

$$
\mathbf{A} \cdot \mathbf{A}^{-1}=\mathbf{A}^{-1} \cdot \mathbf{A}=\mathbf{I}_{n}
$$

Eigenvectors, eigenvalues, determinant, linear independence, inverses

- $\mathbf{v} \in \mathbb{R}^{n}$ is an eigenvector of $\mathbf{A} \in \mathbb{R}^{n \times n}$ with eigenvalue $\lambda \in \mathbb{R}$ if $\mathbf{A} \cdot \mathbf{v}=\lambda \cdot \mathbf{v}$
- A is positive (negative) definite if all eigenvalues are strictly greater (smaller) than zero
- Determinant of $\mathbf{A} \in \mathbb{R}^{n \times n}$ with eigenvectors $\lambda_{1}, \ldots, \lambda_{n}$ is

$$
\operatorname{det}(\mathbf{A})=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n}
$$

- $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)} \in \mathbb{R}^{D}$ are linearly independent if there are no $r_{1}, \ldots, r_{n} \in \mathbb{R} \backslash\{0\}$ such that

$$
\sum_{1 \leq i \leq n} r_{i} \cdot \mathbf{v}^{(i)}=\mathbf{0}
$$

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ invertible if there is $\mathbf{A}^{-1} \in \mathbb{R}^{n \times n}$ s.t.

$$
\mathbf{A} \cdot \mathbf{A}^{-1}=\mathbf{A}^{-1} \cdot \mathbf{A}=\mathbf{I}_{n}
$$

- Note that:
- A is invertible if rows of \mathbf{A} are linearly independent
- equivalently if $\operatorname{det}(\mathbf{A}) \neq 0$
- If \mathbf{A} invertible then $\mathbf{A} \cdot \mathbf{x}=\mathbf{b}$ has solution $\mathbf{x}=\mathbf{A}^{-1} \cdot \mathbf{b}$

Vector norms

Vector norms allow us to talk about the length of vectors

- The L^{p} norm of $\mathbf{v}=\left(v_{1}, \ldots, v_{D}\right) \in \mathbb{R}^{D}$ is given by

$$
\|\mathbf{v}\|_{p}=\left(\sum_{1 \leq i \leq D}\left|v_{i}\right|^{p}\right)^{1 / p}
$$

Vector norms

Vector norms allow us to talk about the length of vectors

- The L^{p} norm of $\mathbf{v}=\left(v_{1}, \ldots, v_{D}\right) \in \mathbb{R}^{D}$ is given by

$$
\|\mathbf{v}\|_{p}=\left(\sum_{1 \leq i \leq D}\left|v_{i}\right|^{p}\right)^{1 / p}
$$

- Properties of L^{p} (which actually hold for any norm):
- $\|\mathbf{v}\|_{p}=0$ implies $\mathbf{v}=\mathbf{0}$
- $\|\mathbf{v}+\mathbf{w}\|_{p} \leq\|\mathbf{v}\|_{p}+\|\mathbf{w}\|_{p}$
- $\|r \cdot \mathbf{v}\|_{p}=|r| \cdot\|\mathbf{v}\|_{p}$ for all $r \in \mathbb{R}$

Vector norms

Vector norms allow us to talk about the length of vectors

- The L^{p} norm of $\mathbf{v}=\left(v_{1}, \ldots, v_{D}\right) \in \mathbb{R}^{D}$ is given by

$$
\|\mathbf{v}\|_{p}=\left(\sum_{1 \leq i \leq D}\left|v_{i}\right|^{p}\right)^{1 / p}
$$

- Properties of L^{p} (which actually hold for any norm):
- $\|\mathbf{v}\|_{p}=0$ implies $\mathbf{v}=\mathbf{0}$
- $\|\mathbf{v}+\mathbf{w}\|_{p} \leq\|\mathbf{v}\|_{p}+\|\mathbf{w}\|_{p}$
- $\|r \cdot \mathbf{v}\|_{p}=|r| \cdot\|\mathbf{v}\|_{p}$ for all $r \in \mathbb{R}$
- Popular norms:
- Manhattan norm L^{1}
- Eucledian norm L^{2}
- Maximum norm L^{∞} where $\|\mathbf{v}\|_{\infty}=\max _{1 \leq i \leq D}\left|v_{i}\right|$

Vector norms

Vector norms allow us to talk about the length of vectors

- The L^{p} norm of $\mathbf{v}=\left(v_{1}, \ldots, v_{D}\right) \in \mathbb{R}^{D}$ is given by

$$
\|\mathbf{v}\|_{p}=\left(\sum_{1 \leq i \leq D}\left|v_{i}\right|^{p}\right)^{1 / p}
$$

- Properties of L^{p} (which actually hold for any norm):
- $\|\mathbf{v}\|_{p}=0$ implies $\mathbf{v}=\mathbf{0}$
- $\|\mathbf{v}+\mathbf{w}\|_{p} \leq\|\mathbf{v}\|_{p}+\|\mathbf{w}\|_{p}$
- $\|r \cdot \mathbf{v}\|_{p}=|r| \cdot\|\mathbf{v}\|_{p}$ for all $r \in \mathbb{R}$
- Popular norms:
- Manhattan norm L^{1}
- Eucledian norm L^{2}
- Maximum norm L^{∞} where $\|\mathbf{v}\|_{\infty}=\max _{1 \leq i \leq D}\left|v_{i}\right|$
- Vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{D}$ are orthonormal if \mathbf{v} and \mathbf{w} are orthogonal and $\|\mathbf{v}\|_{2}=\|\mathbf{w}\|_{2}=1$

Calculus

Functions of one variable $f: \mathbb{R} \rightarrow \mathbb{R}$

- First derivative:

$$
f^{\prime}(x)=\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- $f^{\prime}\left(x^{*}\right)=0$ means that $f\left(x^{*}\right)$ is a critical or stationary point
- Can be a local minimum, a local maximum, or a saddle point
- Global minima are local minima x^{*} with smallest $f\left(x^{*}\right)$
- Second derivative test to (partially) decide nature of critical point

Calculus

Functions of one variable $f: \mathbb{R} \rightarrow \mathbb{R}$

- First derivative:

$$
f^{\prime}(x)=\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- $f^{\prime}\left(x^{*}\right)=0$ means that $f\left(x^{*}\right)$ is a critical or stationary point
- Can be a local minimum, a local maximum, or a saddle point
- Global minima are local minima x^{*} with smallest $f\left(x^{*}\right)$
- Second derivative test to (partially) decide nature of critical point
- Differentiation rules:

$$
\begin{gathered}
\frac{d}{d x} x^{n}=n \cdot x^{n-1} \quad \frac{d}{d x} a^{x}=a^{x} \cdot \ln (a) \quad \frac{d}{d x} \log _{a}(x)=\frac{1}{x \cdot \ln (a)} \\
(f+g)^{\prime}=f^{\prime}+g^{\prime} \quad(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}
\end{gathered}
$$

- Chain rule: if $f=h(g)$ then $f^{\prime}=h^{\prime}(g) \cdot g^{\prime}$

Calculus

Functions of multiple variables $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$

- Partial derivative of $f\left(x_{1}, \ldots, x_{m}\right)$ in direction x_{i} at $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$:

$$
\frac{\partial}{\partial x_{i}} f(\mathbf{a})=\lim _{h \rightarrow 0} \frac{f\left(a_{1}, \ldots, a_{i}+h, \ldots, a_{m}\right)-f\left(a_{1}, \ldots, a_{i}, \ldots, a_{m}\right)}{h}
$$

Calculus

Functions of multiple variables $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$

- Partial derivative of $f\left(x_{1}, \ldots, x_{m}\right)$ in direction x_{i} at $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$:

$$
\frac{\partial}{\partial x_{i}} f(\mathbf{a})=\lim _{h \rightarrow 0} \frac{f\left(a_{1}, \ldots, a_{i}+h, \ldots, a_{m}\right)-f\left(a_{1}, \ldots, a_{i}, \ldots, a_{m}\right)}{h}
$$

- Gradient (assuming f is differentiable everywhere):

$$
\nabla_{\mathbf{x}} f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{m}}\right) \quad \text { s.t. } \quad \nabla_{\mathbf{x}} f(\mathbf{a})=\left(\frac{\partial f}{\partial x_{1}}(\mathbf{a}), \ldots, \frac{\partial f}{\partial x_{m}}(\mathbf{a})\right)
$$

- Points in direction of steepest ascent
- Critical point if $\nabla_{\mathbf{x}} f(\mathbf{a})=\mathbf{0}$

Calculus

Functions of multiple variables $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$

- Partial derivative of $f\left(x_{1}, \ldots, x_{m}\right)$ in direction x_{i} at $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$:

$$
\frac{\partial}{\partial x_{i}} f(\mathbf{a})=\lim _{h \rightarrow 0} \frac{f\left(a_{1}, \ldots, a_{i}+h, \ldots, a_{m}\right)-f\left(a_{1}, \ldots, a_{i}, \ldots, a_{m}\right)}{h}
$$

- Gradient (assuming f is differentiable everywhere):

$$
\nabla_{\mathbf{x}} f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{m}}\right) \quad \text { s.t. } \quad \nabla_{\mathbf{x}} f(\mathbf{a})=\left(\frac{\partial f}{\partial x_{1}}(\mathbf{a}), \ldots, \frac{\partial f}{\partial x_{m}}(\mathbf{a})\right)
$$

- Points in direction of steepest ascent
- Critical point if $\nabla_{\mathbf{x}} f(\mathbf{a})=\mathbf{0}$

Functions of multiple variables to vectors $\mathrm{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$:

- \mathbf{f} given as $\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right)$ with $f_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$
- Jacobian \mathbf{J} of \mathbf{f} is an $n \times m$ matrix such that

$$
\mathbf{J}_{i, j}=\frac{\partial f_{i}}{\partial x_{j}}
$$

Calculus

Second-order derivatives of $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$:

- Hessian is square matrix consisting of all second-order derivatives:

$$
\mathbf{H}(f)(\mathbf{x})_{i, j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(\mathbf{x})
$$

- Symmetric (at continuous points)
- If $\mathbf{H}(f)(\mathbf{a})$ positive (negative) definite then critical point a is local minimum (maximum)
- Second derivative test may be inconclusive

Calculus

Second-order derivatives of $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$:

- Hessian is square matrix consisting of all second-order derivatives:

$$
\mathbf{H}(f)(\mathbf{x})_{i, j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(\mathbf{x})
$$

- Symmetric (at continuous points)
- If $\mathbf{H}(f)$ (a) positive (negative) definite then critical point a is local minimum (maximum)
- Second derivative test may be inconclusive

Useful differentiation rules:

$$
\begin{aligned}
\nabla_{\mathbf{x}}\left(\mathbf{c}^{\top} \mathbf{x}\right) & =\mathbf{c} \\
\nabla_{\mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{A} \cdot \mathbf{x}\right) & =\mathbf{A} \mathbf{x}+\mathbf{A}^{\top} \mathbf{x} \quad(=2 \mathbf{A} \mathbf{x} \text { for symmetric } \mathbf{A}) \\
\nabla_{\mathbf{x}}(f+g) & =\nabla_{\mathbf{x}} f+\nabla_{\mathbf{x}} g \\
\nabla_{\mathbf{x}}(f \cdot g) & =f \cdot \nabla_{\mathbf{x}} g+g \cdot \nabla_{\mathbf{x}} f
\end{aligned}
$$

Calculus

Second-order derivatives of $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$:

- Hessian is square matrix consisting of all second-order derivatives:

$$
\mathbf{H}(f)(\mathbf{x})_{i, j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(\mathbf{x})
$$

- Symmetric (at continuous points)
- If $\mathbf{H}(f)$ (a) positive (negative) definite then critical point a is local minimum (maximum)
- Second derivative test may be inconclusive

Useful differentiation rules:

$$
\begin{aligned}
\nabla_{\mathbf{x}}\left(\mathbf{c}^{\top} \mathbf{x}\right) & =\mathbf{c} & \\
\nabla_{\mathbf{x}}\left(\mathbf{x}^{\top} \mathbf{A} \cdot \mathbf{x}\right) & =\mathbf{A x}+\mathbf{A}^{\top} \mathbf{x} & (=2 \mathbf{A x} \text { for symmetric } \mathbf{A}) \\
\nabla_{\mathbf{x}}(f+g) & =\nabla_{\mathbf{x}} f+\nabla_{\mathbf{x}} g & \\
\nabla_{\mathbf{x}}(f \cdot g) & =f \cdot \nabla_{\mathbf{x}} g+g \cdot \nabla_{\mathbf{x}} f &
\end{aligned}
$$

See http://en.wikipedia.org/wiki/Matrix_calculus for many more useful rules, and use them!

Chain rule in higher dimensions

Let $\mathbf{y}=g(\mathbf{x}), z=f(\mathbf{y})$ for $\mathbf{x} \in \mathbb{R}^{m}$ and $\mathbf{y} \in \mathbb{R}^{n}$:

$$
\begin{aligned}
\frac{\partial z}{\partial x_{i}} & =\sum_{j} \frac{\partial z}{\partial y_{j}} \cdot \frac{\partial y_{j}}{\partial x_{i}} \\
\nabla_{\mathbf{x}} z & =\mathbf{J}_{g}^{\top} \cdot \nabla_{\mathbf{y}} z=\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \cdot \nabla_{\mathbf{y}} z
\end{aligned}
$$

Chain rule in higher dimensions

Let $\mathbf{y}=g(\mathbf{x}), z=f(\mathbf{y})$ for $\mathbf{x} \in \mathbb{R}^{m}$ and $\mathbf{y} \in \mathbb{R}^{n}$:

$$
\begin{aligned}
\frac{\partial z}{\partial x_{i}} & =\sum_{j} \frac{\partial z}{\partial y_{j}} \cdot \frac{\partial y_{j}}{\partial x_{i}} \\
\nabla_{\mathbf{x}} z & =\mathbf{J}_{g}^{\top} \cdot \nabla_{\mathbf{y}} z=\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \cdot \nabla_{\mathbf{y}} z
\end{aligned}
$$

Example

Let $g(x, y)=\left(x^{2}, y\right), f(s, t)=(s+t)^{2}$ and $z=f(g(x, y))$. Then

$$
\begin{aligned}
\frac{\partial z}{\partial x} & =\frac{\partial z}{\partial s} \cdot \frac{\partial s}{\partial x}+\frac{\partial z}{\partial t} \cdot \frac{\partial t}{\partial x}=2 \cdot\left(x^{2}+y\right) \cdot 1 \cdot 2 \cdot x+2 \cdot\left(x^{2}+y\right) \cdot 1 \cdot 0=4 x\left(x^{2}+y\right) \\
\mathbf{J}_{g}^{\top} & =\left[\begin{array}{cc}
2 \cdot x & 0 \\
0 & 1
\end{array}\right] \\
\nabla_{\mathbf{y}} z & =\left(2 \cdot\left(x^{2}+y\right), 2 \cdot\left(x^{2}+y\right)\right) \\
\nabla_{\mathbf{x}} z & =\left(4 \cdot x \cdot\left(x^{2}+y\right), 2 \cdot\left(x^{2}+y\right)\right)
\end{aligned}
$$

Probability theory

Probability space:

- Consists of sample space S and a probability function $p: \mathcal{P}(S) \rightarrow[0,1]$ assigning a probability to every event
- Fulfills axioms of probability:
- $p(\emptyset)=0$ and $p(S)=1$
- For mutually exclusive events A_{1}, A_{2}, \ldots

$$
p\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} p\left(A_{i}\right)
$$

Probability theory

Probability space:

- Consists of sample space S and a probability function $p: \mathcal{P}(S) \rightarrow[0,1]$ assigning a probability to every event
- Fulfills axioms of probability:
- $p(\emptyset)=0$ and $p(S)=1$
- For mutually exclusive events A_{1}, A_{2}, \ldots

$$
p\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} p\left(A_{i}\right)
$$

Trivial properties:

- $p(\bar{A})=1-p(A)$
- If $A \subseteq B$ then $p(A) \leq p(B)$
- $p(A \cup B)=p(A)+p(B)-p(A \cap B)$

Probability theory

Conditional probability:

- Given events A, B with $p(B)>0$, conditional probability of A given B is

$$
p(A \mid B)=\frac{p(A \cap B)}{p(B)}
$$

- $p(A)$ is prior, and $p(A \mid B)$ is posterior probability of A
- Law of total probability: Given partition A_{1}, \ldots, A_{n} of S with $p\left(A_{i}\right)>0$,

$$
p(B)=\sum_{i=1}^{n} p\left(B \mid A_{i}\right) \cdot p\left(A_{i}\right)
$$

- Bayes' rule:

$$
p(A \mid B)=\frac{p(B \mid A) \cdot p(A)}{p(B)}
$$

Probability Theory

Random variable (r.v.):

- Function from sample space to some numeric domain (usually \mathbb{R})
- $p(X=x)$ denotes probability of event $\{s \in S: X(s)=x\}$
- Write $X \sim p(x)$ to specify probability distribution of X

Probability Theory

Random variable (r.v.):

- Function from sample space to some numeric domain (usually \mathbb{R})
- $p(X=x)$ denotes probability of event $\{s \in S: X(s)=x\}$
- Write $X \sim p(x)$ to specify probability distribution of X

Discrete random variables:

- Discrete if there are a_{1}, a_{2}, \ldots such that $p\left(X=a_{j}\right.$ for some $\left.j\right)=1$
- Probability mass function (PMF) p_{X} given by $p_{X}(x)=p(X=x)$ giving distribution of X
- Cumulative distribution function (CDF) maps x to $p(X \leq x)$

Probability Theory

Random variable (r.v.):

- Function from sample space to some numeric domain (usually \mathbb{R})
- $p(X=x)$ denotes probability of event $\{s \in S: X(s)=x\}$
- Write $X \sim p(x)$ to specify probability distribution of X

Discrete random variables:

- Discrete if there are a_{1}, a_{2}, \ldots such that $p\left(X=a_{j}\right.$ for some $\left.j\right)=1$
- Probability mass function (PMF) p_{X} given by $p_{X}(x)=p(X=x)$ giving distribution of X
- Cumulative distribution function (CDF) maps x to $p(X \leq x)$

Continuous random variables:

- Continuous if CDF is differentiable
- Probability density function (PDF) $p(x)$ is derivative of CDF giving distribution of X

Probability Theory

Joint probability distributions:

- Natural generalisation to vectors of random variables giving joint probability distributions, e.g., $p(X=x, Y=y)$
- Marginal probability distribution: Given $p(X, Y)$, obtain $p(X)$ via

$$
p(X=x)=\sum_{y} p(X=x, Y=y) \quad \text { resp. } \quad p(x)=\int p(x, y) d y
$$

- Conditional probabilities: Assuming $p(X=x)>0$,

$$
p(Y=y \mid X=x)=\frac{p(Y=y, X=x)}{p(X=x)}
$$

- Chain rule of conditional probability:

$$
p\left(X^{(1)}, \ldots, X^{(n)}\right)=p\left(X^{(1)}\right) \cdot \prod_{i=2}^{n} p\left(X^{(i)} \mid X^{(1)}, \ldots, X^{(i-1)}\right)
$$

Probability Theory

Expected value of random variable w.r.t. f :

- $\mathbb{E}_{X \sim p}[f(x)]=\sum_{x} p(x) \cdot f(x)$ (for discrete r.v.'s)
- $\mathbb{E}_{X \sim p}[f(x)]=\int p(x) \cdot f(x) d x$ (for continuous r.v.'s)
- Linearity of expectation:

$$
\mathbb{E}_{X}[\alpha \cdot f(x)+\beta \cdot g(x)]=\alpha \cdot \mathbb{E}_{X}[f(x)]+\beta \cdot \mathbb{E}_{X}[g(x)]
$$

Probability Theory

Expected value of random variable w.r.t. f :

- $\mathbb{E}_{X \sim p}[f(x)]=\sum_{x} p(x) \cdot f(x)$ (for discrete r.v.'s)
- $\mathbb{E}_{X \sim p}[f(x)]=\int p(x) \cdot f(x) d x$ (for continuous r.v.'s)
- Linearity of expectation:

$$
\mathbb{E}_{X}[\alpha \cdot f(x)+\beta \cdot g(x)]=\alpha \cdot \mathbb{E}_{X}[f(x)]+\beta \cdot \mathbb{E}_{X}[g(x)]
$$

Properties of random variables:

- Variance captures how much values of probability distribution vary on average if randomly drawn:

$$
\operatorname{Var}(f(x))=\mathbb{E}\left[(f(x)-\mathbb{E}[f(x)])^{2}\right]
$$

- Standard deviation is square root of variance

$$
\mathrm{SD}(f(X))=\sqrt{\operatorname{Var}(f(x))}
$$

- Covariance generalises variance to two r.v.'s:

$$
\operatorname{Cov}(f(x), g(y))=\mathbb{E}[(f(x)-\mathbb{E}[f(x)]) \cdot(g(y)-\mathbb{E}[g(y)])]
$$

- Covariance matrix $\boldsymbol{\Sigma}$ generalises covariance to multiple r.v.'s x_{i} :

$$
\boldsymbol{\Sigma}_{i, j}=\operatorname{Cov}\left(f_{i}\left(x_{i}\right), f_{j}\left(x_{j}\right)\right)
$$

Probability Theory

Well-known discrete probability distributions:

- Bernoulli:
- Parameter: $\phi \in[0,1]$
- PMF: $p(X=1)=\phi, p(X=0)=1-\phi$;
- $\mathbb{E}[X]=\phi ; \operatorname{Var}(X)=\phi \cdot(1-\phi)$

Probability Theory

Well-known discrete probability distributions:

- Bernoulli:
- Parameter: $\phi \in[0,1]$
- PMF: $p(X=1)=\phi, p(X=0)=1-\phi$;
- $\mathbb{E}[X]=\phi ; \operatorname{Var}(X)=\phi \cdot(1-\phi)$
- Binomial distribution:
- Parameters: $\phi \in[0,1], n \in \mathbb{N} \backslash\{0\}$
- PMF: $p(X=k)=\binom{n}{k} \cdot \phi^{k} \cdot(1-\phi)^{n-k}$
- $\mathbb{E}[X]=n \cdot \phi ; \operatorname{Var}(X)=n \cdot \phi \cdot(1-\phi)$

Probability Theory

Well-known continuous probability distributions:

- Normal distribution:
- Parameters: μ, σ^{2}
- PDF:

$$
\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\sqrt{\frac{1}{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

- $\mathbb{E}[X]=\mu ; \operatorname{Var}(X)=\sigma^{2}$

Probability Theory

- Multivariate normal distribution:
- Parameters: $k, \mu, \boldsymbol{\Sigma}$ positive semi-definite
- PDF:

$$
\mathcal{N}(\mathbf{x} ; \mu, \boldsymbol{\Sigma})=\sqrt{\frac{1}{(2 \pi)^{k} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu)\right)
$$

- $\mathbb{E}[\mathbf{X}]=\mu ; \operatorname{Var}(\mathbf{X})=\boldsymbol{\Sigma}$

Probability Theory

Well-known continuous probability distributions:

- Laplace distribution:
- Parameters: μ, γ^{2}
- PDF:

$$
\operatorname{Lap}(x ; \mu, \gamma)=\frac{1}{2 \gamma} \exp \left(-\frac{|x-\mu|}{\gamma}\right)
$$

- $\mathbb{E}[X]=\mu ; \operatorname{Var}(X)=2 \gamma^{2}$

Next Time

- Supervised Machine Learning: Linear regression

