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Outline

Goals

I Review the supervised learning setting

I Describe the linear regression framework

I Apply the linear model to make predictions

I Derive the least squares estimate

Supervised Learning Setting

I Data consists of input and output pairs

I Inputs (also covariates, independent variables, predictors, features)

I Output (also variates, dependent variable, targets, labels)
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Why study linear regression?

I Least squares is at least 200 years old going back to Legendre and Gauss

I Francis Galton (1886): ‘‘Regression to the mean’’

I Often real processes can be approximated by linear models

I More complex models require understanding linear regression

I Closed form analytic solutions can be obtained

I Many key notions of machine learning can be introduced
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A toy example : Commute Times

Want to predict commute time into city centre

What variables would be useful?
I Distance to city centre
I Day of the week

Data

dist (km) day commute time (min)
2.7 fri 25
4.1 mon 33
1.0 sun 15
5.2 tue 45
2.8 sat 22
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Linear Models

Suppose the input is a vector x ∈ RD and the output is y ∈ R.

We have data 〈xi, yi〉Ni=1

Notation: data dimensionD, size of datasetN , column vectors

Linear Model

y = w0 + x1w1 + · · ·+ xDwD + ε

Bias/intercept Noise/uncertainty
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Linear Models : Commute Time

Linear Model

y = w0 + x1w1 + · · ·+ xDwD + ε

Bias/intercept Noise/uncertainty

Input encoding: mon-sun has to be converted to a number

I monday: 0, tuesday: 1, . . . , sunday: 6

I 0 if weekend, 1 if weekday

Say x1 ∈ R (distance) and x2 ∈ {0, 1} (weekend/weekday)

Linear model for commute time

y = w0 + w1x1 + w2x2 + ε

Using 0-6 is a bad encoding.
Use seven 0-1 features instead
called one-hot encoding
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Linear Model : Adding a feature for bias term

dist day commute time
x1 x2 y

2.7 fri 25
4.1 mon 33
1.0 sun 15
5.2 tue 45
2.8 sat 22

Model

y = w0 + w1x1 + w2x2 + ε

⇔

one dist day commute time
x0 x1 x2 y

1 2.7 fri 25
1 4.1 mon 33
1 1.0 sun 15
1 5.2 tue 45
1 2.8 sat 22

Model

y = w0x0 + w1x1 + w2x2 + ε

= w · x + ε
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Learning Linear Models

Data: 〈(xi, yi)〉Ni=1, where xi ∈ RD and yi ∈ R

Model parameterw, wherew ∈ RD

Training phase: (learning/estimationw from data)

Learning
Algorithm

w (estimate)
〈(xi, yi)〉Ni=1

data

Testing/Deployment phase: (predict ŷnew = xnew ·w)

I How different is ŷnew from ynew (actual observation)?

I We should keep some data aside for testing before deploying a model
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〈(xi, yi)〉Ni=1, where xi ∈ R and yi ∈ R

ŷ(x) = w0 + x · w1, (no noise term in ŷ)

L(w) = L(w0, w1) =
1

2N

N∑
i=1

(ŷi − yi)2 =
1

2N

N∑
i=1

(w0 + xi · w1 − yi)2

Loss function
Cost function

Objective Function
Energy Function

Notation - L, J, E,R

This objective is known
as the residual sum
of squares or (RSS)

The estimate (w0, w1)
is known as the least
squares estimate
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〈(xi, yi)〉Ni=1, where xi ∈ R and yi ∈ R

ŷ(x) = w0 + x · w1, (no noise term in ŷ)

L(w) = L(w0, w1) =
1

2N

N∑
i=1

(ŷi − yi)2 =
1

2N

N∑
i=1

(w0 + xi · w1 − yi)2

∂L
∂w0

=
1

N

N∑
i=1

(w0 + w1 · xi − yi)

∂L
∂w1

=
1

N

N∑
i=1

(w0 + w1 · xi − yi)xi

We obtain the solution for (w0, w1) by setting the
partial derivatives to 0 and solving the resulting
system. (Normal Equations)

w0 + w1 ·
∑

i xi

N
=

∑
i yi

N
(1)

w0 ·
∑

i xi

N
+ w1 ·

∑
i x

2
i

N
=

∑
i xiyi

N
(2)

x̄ =

∑
i xi

N

ȳ =

∑
i yi

N

v̂ar(x) =

∑
i x

2
i

N
− x̄2

ĉov(x, y) =

∑
i xiyi

N
− x̄ · ȳ

w1 =
ĉov(x, y)

v̂ar(x)

w0 = ȳ − w1 · x̄
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Linear Regression : General Case

Recall that the linear model is

ŷi =

D∑
j=0

xijwj

where we assume that xi0 = 1 for all xi, so that the bias term w0 does not
need to be treated separately.

Expressing everything in matrix notation

ŷ = Xw

Here we have ŷ ∈ RN×1,X ∈ RN×(D+1) andw ∈ R(D+1)×1

ŷN×1
ŷ1
ŷ2
...
ŷN

 =

XN×(D+1)
xT
1

xT
2

...
xT
N



w(D+1)×1
w0

...
wD

 =

XN×(D+1)
x10 · · · x1D
x20 · · · x2D
...

. . .
...

xN0 · · · xND



w(D+1)×1
w0

...
wD
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Back to toy example
one dist (km) weekday? commute time (min)
1 2.7 1 (fri) 25
1 4.1 1 (mon) 33
1 1.0 0 (sun) 15
1 5.2 1 (tue) 45
1 2.8 0 (sat) 22

We haveN = 5,D + 1 = 3 and so we get

y =


25
33
15
45
22

 , X =


1 2.7 1
1 4.1 1
1 1.0 0
1 5.2 1
1 2.8 0

 , w =

w0

w1

w2



Suppose we getw = [6.09, 6.53, 2.11]T. Then our predictions would be

ŷ =


25.83
34.97
12.62
42.16
24.37


11



Least Squares Estimate : Minimise the Squared Error

L(w) =
1

2N

N∑
i=1

(xT
i w − yi)2 =

1

2N
(Xw − y)T (Xw − y)
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Finding Optimal Solutions using Calculus

L(w) =
1

2N

N∑
i=1

(xT
i w − yi)2 =

1

2N
(Xw − y)T (Xw − y)

=
1

2N

(
wT
(
XTX

)
w −wTXTy − yTXw + yTy

)
=

1

2N

(
wT
(
XTX

)
w − 2 · yTXw + yTy

)
= · · ·

Then, write out all partial derivatives to form the gradient∇wL

∂L
∂w0

= · · ·
∂L
∂w1

= · · ·

...
∂L
∂w

D
= · · ·

Instead, we will use matrix cal-
culus shortcuts to differentiate
using matrix notation directly
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Differentiating Matrix Expressions

Rules (Tricks)

(i) Linear Form Expressions: ∇w

(
cTw

)
= c

cTw =
D∑

j=0

cjwj

∂(cTw)
∂wj

= cj , and so ∇w

(
cTw

)
= c (3)

(ii) Quadratic Form Expressions:

∇w

(
wTAw

)
= Aw + ATw ( = 2Aw for symmetricA)

wTAw =
D∑
i=0

D∑
j=0

wiwjAij

∂(wTAw)
∂w

k
=

D∑
i=0

wiAik +
D∑

j=0

Akjwj = AT
[:,k]w + A[k,:]w

∇w

(
wTAw

)
= ATw + Aw (4)
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Deriving the Least Squares Estimate

L(w) =
1

2N

N∑
i=1

(xT
i w − yi)2 =

1

2N

(
wT
(
XTX

)
w − 2 · yTXw + yTy

)
We compute the gradient∇wL = 0 using the matrix differentiation rules,

∇wL =
1

N

((
XTX

)
w −XTy

)
By setting∇wL = 0 and solving we get,(
XTX

)
w = XTy

w =
(
XTX

)−1

XTy (Assuming inverse exists)

The predictions made by the model on the dataX are given by

ŷ = Xw = X
(
XTX

)−1

XTy

For this reason the matrixX
(
XTX

)−1

XT is called the ‘‘hat’’ matrix
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Least Squares Estimate

w =
(
XTX

)−1

XTy

I When do we expectXTX to be invertible?

rank(XTX) = rank(X) ≤ min{D + 1, N}

AsXTX isD + 1×D + 1, invertible is rank(X) = D + 1

I What if we use one-hot encoding for a feature like day?

Suppose xmon, . . . , xsun stand for 0-1 valued variables in the one-hot encoding

We always have xmon + · · ·+ xsun = 1

This introduces a linear dependence in the columns ofX reducing the rank

In this case, we can drop some features to adjust rank. We’ll see alternative
approaches later in the course.

I What is the computational complexity of computingw?

Relatively easy to getO(D2N) bound
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Recap : Predicting Commute Time

Goal

I Predict the time taken for commute given distance and day of week

I Do we only wish to make predictions or also suggestions?

Model and Choice of Loss Function

I Use a linear model

y = w0 + w1x1 + · · ·+ wDxD + ε = ŷ + ε

I Minimise average squared error 1
2N

∑
(yi − ŷi)2

Algorithm to Fit Model

I Simple matrix operations using closed-form solution
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Model and Loss Function Choice

‘‘Optimisation’’ View of Machine Learning

I Pick model that you expect may fit the data well enough

I Pick a measure of performance that makes ‘‘sense’’ and can be
optimised

I Run optimisation algorithm to obtain model parameters

Probabilistic View of Machine Learning

I Pick a model for data and explicitly formulate the deviation (or
uncertainty) from the model using the language of probability

I Use notions from probability to define suitability of various models

I ‘‘Find’’ the parameters or make predictions on unseen data using these
suitability criteria (Frequentist vs Bayesian viewpoints)
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Next Time

I Probabilistic View of Machine Learning (Maximum Likelihood)

I Non-linearity using basis expansion

I What to do when you have more features than data?

I Make sure you’re familiar with the the multi-variate Gaussian
distribution
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