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Probabilistic Perspective of Machine Learning

I Probabilistic Formulation of the Linear Model

I Maximum Likelihood Estimate

I Relation to the Least Squares Estimate

1



Outline

Probability Review

Linear Regression and Maximum Likelihood



Univariate Gaussian (Normal) Distribution

The univariate normal distribution is defined by the following density
function

p(x) =
1√
2πσ

e
− (x−µ)2

2σ2 X ∼ N (µ, σ2)

Here µ is the mean and σ2 is the variance.

Mean µ

σ

a b

Pr(a ≤ x ≤ b)

∫ ∞
−∞

p(x) dx = 1∫ ∞
−∞

xp(x) dx = µ∫ ∞
−∞

(x− µ)2p(x) dx = σ2
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Sampling from a Gaussian distribution

Sampling fromX ∼ N (µ, σ2)

By setting Y = X−µ
σ

, sample from Y ∼ N (0, 1)

Cumulative distribution function

Φ(x; 0, 1) =
1√
2π

∫ x

−∞
e−

t2

2 dt

Φ(a)

a

a

Φ(a)

0

1

0

1

y ∼ Unif([0, 1])

x
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Bivariate Normal (Gaussian) Distribution

SupposeX1 ∼ N (µ1, σ
2
1) andX2 ∼ N (µ2, σ

2
2) are independent

The joint probability distribution p(x1, x2) is a bivariate normal distribution.

p(x1, x2) = p(x1) · p(x2)

=
1√

2πσ1

· exp

(
− (x− µ1)2

2σ2
1

)
· 1√

2πσ2

· exp

(
− (x− µ2)2

2σ2
2

)

=
1

2π(σ2
1σ

2
2)1/2

· exp

−( (x− µ1)2

2σ2
1

+
(x− µ2)2

2σ2
2

)
=

1

2π|Σ|1/2
· exp

(
−1

2
· (x− µ)TΣ−1(x− µ)

)
where

Σ =

[
σ2
1 0

0 σ2
2

]
µ =

[
µ1

µ2

]
x =

[
x1
x2

]

Note: All equiprobable points lie on an ellipse.

4



Covariance and Correlation

For random variableX and Y the covariance measures how the random
variable change jointly

cov(X,Y ) = E
[
(X − E[X]) · (Y − E[Y ])

]

Covariance depends on the scale. The (Pearson) correlation coefficient
normalizes the covariance to give a value between−1 and +1.

corr(X,Y ) =
cov(X,Y )√

var(X) · var(Y )
,

where var(X) = E[(X − E[X])2] and var(Y ) = E[(Y − E[Y ])2].

Independent variables are uncorrelated, but the converse is not true!
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Multivariate Gaussian Distribution

Suppose x is aD-dimensional random vector. The covariance matrix
consists of all pairwise covariances.

cov(x) = E
[
(x − E[x])(x − E[x])T

]
=


var(X1) cov(X1, X2) · · · cov(X1, XD)

cov(X2, X1) var(X2) · · · cov(X2, XD)

.

.

.
.
.
.

. . .
.
.
.

cov(XD, X1) cov(XD, X2) · · · var(XD)

 .

If µ = E[x] and Σ = cov(x), the multivariate normal is defined by the
density

N (µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
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Suppose you are given three independent samples: x1 = 0.3, x2 = 1.4, and
x3 = 1.7

You know that the data is generated from eitherN (0, 1) orN (2, 1).

Let θ represent the parameters (µ, σ) of the two distributions. Then the
probability of observing the data with parameter θ is called the likelihood.

p(x1, x2, x3 | θ) = p(x1 | θ) · p(x2 | θ) · p(x3 | θ)

We have to choose between θ = (0, 1) or θ = (2, 1). Which one is more
likely?

x1 x2 x3
µ = 2µ = 0

Maximum Likelihood Estimation (MLE)

Pick parameter θ that maximises the likelihood
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Linear Regression

Linear Model

y = w0x0 + w1x1 + · · ·+ wDxD + ε = w · x + ε

Noise/uncertainty

Model y given x, w as a random variable with mean wTx.

E[y | x,w] = wTx

We will be specific in choosing the distribution of y given x and w. Let us
assume that given x,w, y is normal with mean wTx and variance σ2

p(y |w,x) = N (wTx, σ2) = wTx +N (0, σ2)

Alternatively, we may view this model as ε ∼ N (0, σ2) (Gaussian Noise)

Discriminative Framework

Throughout this lecture, think of the inputs x1, . . . ,xN as fixed
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Likelihood of Linear Regression (Gaussian Noise Model)

Suppose we observe data 〈(xi, yi)〉Ni=1.

What is the likelihood of observing the data for model parameters w, σ?

MLE Estimator

Find parameterswhichmaximise the
likelihood.

(product of ‘‘likelihood density’’
segments)

Least Square Estimator

Find parameters which minimise the
sum of squares of the residuals

(sum of squares of the segments).
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Likelihood of Linear Regression (Gaussian Noise Model)

Suppose we observe data 〈(xi, yi)〉Ni=1.

What is the likelihood of observing the data for model parameters w, σ?

p
(
y1, . . . , yN | x1, . . . ,xN ,w, σ

)
=

N∏
i=1

p
(
yi | xi,w, σ

)

According to the model yi ∼ wTxi +N (0, σ2)

p
(
y1, . . . , yN | x1, . . . ,xN ,w, σ

)
=

N∏
i=1

1√
2πσ2

exp

(
− (yi −wTxi)

2

2σ2

)

=

(
1

2πσ2

)N/2
exp

− 1

2σ2
·
N∑
i=1

(yi −wTxi)
2


Want to find parameters w and σ that maximise the likelihood
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Likelihood of Linear Regression (Gaussian Noise Model)

Let us consider the likelihood p(y |X,w, σ)

p
(
y1, . . . , yN | x1, . . . ,xN ,w, σ

)
=

(
1

2πσ2

)N/2
exp

− 1

2σ2
·
N∑
i=1

(yi −wTxi)
2



As log : R+ → R is an increasing function, we can instead maximise the log
of the likelihood (called log-likelihood), which results in a simpler
mathematical expression.

LL(y1, . . . , yN | x1, . . . ,xN ,w, σ) = −N
2

log(2πσ2)− 1

2σ2

N∑
i=1

(yi −wTxi)
2

In vector form, LL(y |X,w, σ) = −N
2

log(2πσ2)− 1

2σ2
(Xw − y)T(Xw − y)

Let’s first find w that maximizes the log-likelihood
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Maximum Likelihood and Least Squares Estimates

We’d like to find w that maximises the log-likelihood

LL(y |X,w, σ) = −N
2

log(2πσ2)− 1

2σ2
(Xw − y)T(Xw − y)

Alternatively, we can minimise the negative log-likelihood

NLL(y |X,w, σ) =
1

2σ2
(Xw − y)T(Xw − y) +

N

2
log(2πσ2)

Recall the objective function we used for the least squares estimate in the
previous lecture

L(w) =
1

2N
(Xw − y)T(Xw − y)

For minimizing with respect to w, the two objectives are the same upto a
constant additive and multiplicative factor!
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Maximum Likelihood Estimate for Linear Regression

As the solution wML to find the maximum likelihood estimator is the same as
the least squares estimator, we have

wML =
(
XTX

)−1

XTy

Recall the form of the negative log-likelihood

NLL(y |X,w, σ) =
1

2σ2
(Xw − y)T(Xw − y) +

N

2
log(2πσ2)

We can also find the maximum likelihood estimate for σ

Exercise on sheet 2 to show that the MLE of σ is given by

σ2
ML =

1

N
(XwML − y)T(XwML − y)
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Prediction using the MLE for Linear Regression

Given training data 〈(xi, yi)〉Ni=1, we can obtain the MLE wML and σML.

One a new point xnew, we can use these to make a prediction and also give
confidence intervals

ŷnew = wML · xnew

ynew ∼ ŷnew +N (0, σ2
ML)
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Summary : MLE for Linear Regression (Gaussian Noise)

Model

I Linear model: y = w · x + ε

I Explicitly model ε ∼ N (0, σ2)

Maximum Likelihood Estimation

I Every w, σ defines a probability distribution over observed data

I Pick w and σ that maximise the likelihood of observing the data

Algorithm

I As in the previous lecture, we have closed form expressions

I Algorithm simply implements elementary matrix operations
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Outliers and Laplace Distribution

If the data has outliers, we can model
the noise using a distribution that has
heavier tails

For the linear model y = w · x + ε, use

ε ∼ Lap(0, b),

where the density function for
Lap(µ, b) is given by

p(x) =
1

2b
exp

(
−|x− µ|

b

)

−6 −4 −2 0 2 4 6

0
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1

Laplace and normal distributions with the same mean and variance
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Maximum Likelihood for Laplace Noise Model

Given data 〈(xi, yi)〉Ni=1, let us express the likelihood of observing the data
in terms model parameters w and b.

p(y1, . . . , yN | x1, . . . ,xN ,w, b) =
N∏
i=1

1

2b
exp

(
−|yi −wTxi|

b

)

=
1

(2b)N
exp

−1

b

N∑
i=1

|yi −wTxi|


As in the case of the Gaussian noise model, we look at the negative
log-likelihood

NLL(y |X,w, b) =
1

b

N∑
i=1

|yi −wTxi|+N log(2b)

Thus, the maximum likelihood estimate in this case can be obtained by
minimising the sum of the absolute values of the residuals, which is the
same objective we discussed in the last lecture in the context fitting a linear
model that is robust to outliers.
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Next Time

I Beyond Linearity: Basis Expansion, Kernels

I Regularization: Ridge Regression, LASSO

I Overfitting, Model Complexity, Cross Validation
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