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Outline

I Basis function expansion to capture non-linear relationships

I Understanding the bias-variance tradeoff

I How does overfitting occur
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Linear Regression : Polynomial Basis Expansion
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Linear Regression : Polynomial Basis Expansion

φ(x) = [1, x, x2]

w0 + w1x+ w2x
2 = φ(x) · [w0, w1, w2]
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Linear Regression : Polynomial Basis Expansion

φ(x) = [1, x, x2, · · · , xd]

Model y = wTφ(x) + ε

Herew ∈ RM , whereM is the number for expanded features
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Linear Regression : Polynomial Basis Expansion

Getting more data can avoid overfitting!
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Polynomial Basis Expansion in Higher Dimensions

Basis expansion can be performed in higher dimensions

We’re still fitting linear models, but using more features

y = w · φ(x) + ε

Linear Model

φ(x) = [1, x1, x2]

Quadratic Model

φ(x) = [1, x1, x2, x
2
1, x

2
2, x1x2]

Using degree d polynomials inD dimensions results in≈ Dd features!
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Basis Expansion Using Kernels

We can use kernels as features

A Radial Basis Function (RBF) kernel with width parameter γ is defined as

κ(x′,x) = exp(−γ‖x− x′‖2)

x′ = 0, γ = 1.5 x′ = 4, γ = 0.2

A kernel computes the dot product κ(x′,x) : X × X → R = φ(x′) · φ(x) of
some expansion φ, see e.g. Sec. 5.7.2 in GBC.

Other kernels:

I Polynomial kernel: κ(x′,x) = (xT · x′ + c)d

I String kernels

I Graph kernels
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Basis Expansion Using Kernels

I RBF kernel: κ(x′,x) = exp(−γ‖x− x′‖2)
I Choose centres µ1, µ2, . . . , µM

I Feature map: φ(x) = [1, κ(µ1,x), . . . , κ(µM ,x)]

y = w0 + w1κ(µ1,x) + · · ·+ wMκ(µM ,x) + ε = w · φ(x) + ε

I How do we choose the centres?

5



Basis Expansion Using Kernels

One reasonable choice is to choose data points themselves as centres for
kernels

Need to choose width parameter γ for the RBF kernel

κ(x,x′) = exp(−γ‖x− x′‖2)

As with the choice of degree in polynomial basis expansion depending on
the width of the kernel overfitting or underfitting may occur

I Overfitting occurs if the width is too small, i.e., γ very large

I Underfitting occurs if the width is too large, i.e., γ very small
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When the kernel width is too large
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When the kernel width is too small
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When the kernel width is chosen suitably
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Big Data: When the kernel width is too large
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Big Data: When the kernel width is too small
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Big Data: When the kernel width is chosen suitably
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Basis Expansion using Kernels

I Overfitting occurs if the kernel width is too small, i.e., γ very large
I Having more data can help reduce overfitting!

I Underfitting occurs if the width is too large, i.e., γ very small
I Extra data does not help at all in this case!

I When the data lies in a high-dimensional space we may encounter the
curse of dimensionality

I If the width is too large then we may underfit

I Might need exponentially large (in the dimension) sample for using
modest width kernels

I Connection to Problem 1 on Sheet 1
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The Bias Variance Tradeoff

High Bias High Variance
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The Bias Variance Tradeoff

I Having high bias means that we are underfitting

I Having high variance means that we are overfitting

I The terms bias and variance in this context are precisely defined
statistical notions

I See Problem Sheet 2, Q3 for precise calculations in one particular
context

I See Sec. 5.4 in the GBC book for a much more detailed description
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Learning Curves

Suppose we’ve trained a model and used it to make predictions

But in reality, the predictions are often poor

I How can we know whether we have high bias (underfitting) or high
variance (overfitting) or neither?

I Should we add more features (higher degree polynomials, lower
width kernels, etc.) to make the model more expressive?

I Should we simplify the model (lower degree polynomials, larger
width kernels, etc.) to reduce the number of parameters?

I Should we try and obtain more data?
I Often there is a computational and monetary cost to using more

data
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Learning Curves

Split the data into a training set and testing set

Train on increasing sizes of data

Plot the training error and test error as a function of training data size

More data is not useful More data would be useful
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Overfitting: How does it occur?

When dealing with high-dimensional data (which may be caused by basis
expansion) even for a linear model we have many parameters

WithD = 100 input variables and using degree 10 polynomial basis
expansion we have∼ 1020 parameters!

Enrico Fermi to Freeman Dyson

‘‘I remember my friend Johnny von Neumann used to say, with four
parameters I can fit an elephant, and with five I can make him wiggle his
trunk.’’ [video]
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https://www.youtube.com/watch?v=FR3Xe3mcSHA


Overfitting: How does it occur?

Suppose we haveD = 100 andN = 100 so thatX is 100× 100

Suppose every entry ofX is drawn fromN (0, 1)

And let yi = xi,1 +N (0, σ2), for σ = 0.2
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Next Time (Lecture Theatre A)

Coping with overfitting:

I Ridge Regression and Lasso

I Model Selection for tuning hyperparameters
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