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Outline

Ridge Regression and Lasso



Ridge Regression

Suppose we have data ((x;,4:))I",, where x € R” withD > N

One idea to avoid overfitting is to add a penalty term for weights

Least Squares Estimate Objective

Liw) = (Xw—y) (Xw —y)

Ridge Regression Objective

Lagge(w) = (Xw —y) ' (Xw —y) + A > w}

i=1




Ridge Regression
We add a penalty term for weights to control model complexity

Should not penalise the constant term wy for being large




Ridge Regression

Should translating and scaling inputs contribute to model complexity?
Suppose § = wo + wix
Supose z is temperature in °C and 2’ in °F

160

Soy = (wo — Twl) + gwlx’

2
In one case “model complexity” is w?, in the other itis 22wi < %1

Should try and avoid dependence on scaling and translation of variables



Ridge Regression

Before optimising the ridge objective, it's a good idea to standardise all
inputs (mean 0 and variance 1)

If in addition, we center the outputs, i.e., the outputs have mean 0, then
the constant term is unnecessary (Exercise on Sheet 2)

Then find w that minimises the objective function

Lrigge(W) = (Xw — y)T(Xw -y)+ Aw'w

= Original Inputs
-+ . Standardised Inputs

o
°1o = g B 10



Deriving Estimate for Ridge Regression

Suppose the data ((x;, y:))~; with inputs standardised and output
centered

We want to derive expression for w that minimises
Ligge(w) = (Xw —y) (Xw — y) + Aw ' w
=w'X'Xw — 2yTXW + yTy +Aw'w
Let's take the gradient of the objective with respect to w
VwLligge = 2(X X)w — 2X Ty + 2Aw
—9 ((XTX + )\ID> w— XTy)
Set the gradient to 0 and solve for w

(XTX + )\ID) w=X"y

‘ wige = (XX + Al ) Xy




Ridge Regression

Minimise Minimise (Xw — y)" (Xw — y)
(Xw—y)" (Xw —y) +Aw'w subjecttow'w < R

3 3

log(A)=11.51
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Ridge Regression

Minimise Minimise (Xw — y)" (Xw — y)
(Xw—y)" (Xw —y) +Aw'w subjecttow'w < R

3 3

’ ’

log(A) =10.20

3 -3
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Ridge Regression

Minimise Minimise (Xw — y)" (Xw — y)
(Xw—y)" (Xw —y) +Aw'w subjecttow'w < R

3 3

log(\) =8.88

3 -3
=3 =2 -1 g 1 2 -3 -2 -1 0 1 2 3



Ridge Regression

Minimise Minimise (Xw — y)" (Xw — y)
(Xw—y)" (Xw —y) +Aw'w subjecttow'w < R

log(\)=7.57
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Ridge Regression

(Xw —y)" (Xw —y) + Aw'w

Minimise Minimise (Xw —y)" (Xw —y)
subjecttow'w < R

log(\) =6.25

-3 -2 -1 0 1 2 -3 -2 -1 [ 1 2 3



Ridge Regression

(Xw —y)" (Xw —y) + Aw'w

Minimise Minimise (Xw —y)" (Xw —y)
subjecttow'w < R

log(\) =4.93

-3 -2 -1 0 1 2 -3 -2 -1 [ 1 2 3



Ridge Regression

Minimise Minimise (Xw — y)" (Xw — y)
(Xw—y)" (Xw —y) +Aw'w subjecttow'w < R

3

log(X\) =3.62

-3 -2 -1 0 1 2 -3 -2 -1 [ 1 2 3



Ridge Regression

Minimise

(Xw —y)" (Xw —y) + Aw'w

Minimise (Xw —y)" (Xw —y)

subjecttow'w < R

log(A) =2.30

3

-2 -1 0 1 2




Ridge Regression

As we decrease )\ the magnitudes of weights start increasing

Weights

-1 o 1 2

—logio(A)



Summary : Ridge Regression

In ridge regression, in addition to the residual sum of squares we penalise
the sum of squares of weights

‘ Ridge Regression Objective

‘ Eridge(w) = (XW - y)T (XW — y) + )\WTW

This is also called ¢>-regularization or weight-decay

Penalising weights “encourages fitting signal rather than just noise”



The Lasso

Lasso (least absolute shrinkage and selection operator) minimises the
following objective function

‘ Lasso Objective

Lissso (W) = (Xw —y) " (Xw —y) + A _ |wi]

i=1

» As with ridge regression, there is a penalty on the weights

» The absolute value function does not allow for a simple close-form
expression (¢;-regularization)

» However, there are advantages to using the lasso as we shall see next



The Lasso : Optimization

Minimise

(Xw—y)" (Xw—y)+ A |w]

i=1

Minimise (Xw —y)" (Xw —y)

D
subject to Z lwi| < R

i=1

-3 -2 -1 0 1 2



The Lasso : Optimization

Minimise Minimise (Xw —y)" (Xw —y)

D D
(Xw—y)" (Xw—y)+ A |w] subjectto > Juwi < R

i=1 i—1




The Lasso : Optimization

Minimise

(Xw—y)" (Xw—y)+ A |w]

i=1

Minimise (Xw —y)" (Xw —y)

D
subject to Z lwi| < R

i=1




The Lasso : Optimization

Minimise (Xw —y)" (Xw —y)

D
subject to Z lwi| < R

i=1

Minimise
D
(Xw —y)T (Xw —y) + A |wl
=1
z /
//
. [
\

AN
AN

log(A

-1

)= =122
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The Lasso : Optimization

Minimise Minimise (Xw —y)" (Xw —y)
D D
.
(Xw —y)T (Xw —y) + A |wl subjectto » " |w;| < R
i=1 i=1

log\)=—-178 ~

= -3
3 -2 -1 0 1 2 -3 -2 -1 0 1 2



The Lasso : Optimization

Minimise Minimise (Xw —y)" (Xw —y)
D D
.
(Xw —y)T (Xw —y) + A |wl subjectto » " |w;| < R
i=1 i=1
gy X . AN



The Lasso : Optimization

Minimise

(Xw—y)" (Xw—y)+ A |w]

i=1

Minimise (Xw —y)" (Xw —y)

D
subject to Z lwi| < R
=1

Tog(A) = —2.89 -

-2

-1

0




The Lasso : Optimization

Minimise (Xw —y)" (Xw —y)

D
subject to Z lwi| < R

i=1

Minimise

(Xw—y)" (Xw—y)+ A |w]




The Lasso Paths

As we decrease )\ the magnitudes of weights start increasing

Weights




Comparing Ridge Regression and the Lasso

Weights
Weights

5 = o T

—logio(A)

When using the Lasso, weights are often exactly 0.

Thus, Lasso gives sparse models.



Overfitting: How does it occur?

Mean Squared Error

We have D = 100 and N = 100 so that X is 100 x 100

Every entry of X is drawn from A/(0, 1)

yi = xi1 + N(0,0%), foro = 0.2
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Overfitting: How does it occur?
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Overfitting: How does it occur?

Mean Squared Error
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Overfitting: How does it occur?

Mean Squared Error

We have D = 100 and N = 100 so that X is 100 x 100

Every entry of X is drawn from A/(0, 1)

Yi = T4,1 +N(O, 0'2), foro = 0.2
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Outline

Model Selection



How to Choose Hyper-parameters?

v

So far, we were just trying to estimate the parameters w

\4

For Ridge Regression or Lasso, we need to choose \

v

If we perform basis expansion

» For kernels, we need to pick the width parameter
» For polynomials, we need to pick degree d

v

For more complex models there may be more hyperparameters



Using a Validation Set

» Divide the data into parts: training, validation (and testing)
» Grid Search: Choose values for the hyperparameters from a finite set

» Train model using training set and evaluate on validation set

A training error(%) | validation error(%)
0.01 0 89

0.1 0 43

1 2 12

10 10 8
100 25 27

» Pick the value of ) that minimises validation error

» Typically, split the data as 80% for training, 20% for validation



Training and Validation Curves

» Plot of training and validation error vs X for Lasso

» Validation error curve is U-shaped

50

»—x  Training Error
+—+ Validation Error

40

30

20

Mean Squared Error

10




K-Fold Cross Validation
When data is scarce, instead of splitting as training and validation:
» Divide datainto K parts
» Use K — 1 parts for training and 1 part as validation
» Commonlyset K =50r K =10

» When K = N (the number of datapoints), it is called LOOCV (Leave one
out cross validation)

Run 1 ’ train train train train -
Run 2 ’ train @ train train - train
Run 3 ’ train : train - train : train
Run 4 ’ train - train train train
Run 5 - train train : train : train

|
|
|
|




Overfitting on the Validation Set

Suppose you do all the right things

» Train on the training set
» Choose hyperparameters using proper validation

» Test on the test set (real world), and your error is unacceptably high!

What would you do?



Winning Kaggle without reading the data!

Suppose the task is to predict N binary labels

Algorithm (Wacky Boosting):
1. Choosey',...,y" € {0,1}" randomly
2. Set I = {i | accuracy(y’) > 51%}
3. Output ; = majority{y} | i € I}

Source blog.mrtz.org

Score

0

Public vs final

100 200 300
Number of submissions

u Public
W Final

400


http://blog.mrtz.org/2015/03/09/competition.html

Feature Selection

1.0

0.8

0.6 i
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0.2

—— First Feature
Other Features
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» Recall that small training set with many features is prone to overfitting

» What if we discard irrelevant features and using training set with fewer
features?

» Problem: there are 2™ subsets of features

20



Feature Selection

Forward search is a generic (i.e. learning algorithm independent) greedy
approach to identify relevant features:

» 1 Set set of selected featuresto F := ()

» 2 Repeat the following until F = {1,...,n}:
» SetFy:=FU{i}forie{l,...,n}\ F
» Evaluate generalization error when using only features from F;
» Set new F to the best feature subset found

» 3 Return best overall feature subset found

Still requires O(n?) calls to underlying learning algorithm

21



Feature Selection

Filter feature selection is computationally more lightweight:
» Only keep feature x; that provide information about y

» Forinstance, use mutual information as criterion:

( zay)
Hawy) = 2, 2 plenw) log oy

zr;€EX yeyY

» Retain top k features

22



Next Time

» Ridge Regression viewed through the Bayesian approach to Machine
Learning

» Preparation for optimization

» Lecture takes place in the University Museum

23
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