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Ridge Regression

Suppose we have data 〈(xi, yi)〉Ni=1, where x ∈ RD withD � N

One idea to avoid overfitting is to add a penalty term for weights

Least Squares Estimate Objective

L(w) = (Xw − y)T(Xw − y)

Ridge Regression Objective

Lridge(w) = (Xw − y)T(Xw − y) + λ

D∑
i=1

w2
i
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Ridge Regression

We add a penalty term for weights to control model complexity

Should not penalise the constant term w0 for being large
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Ridge Regression

Should translating and scaling inputs contribute to model complexity?

Suppose ŷ = w0 + w1x

Supose x is temperature in ◦C and x′ in ◦F

So ŷ =
(
w0 − 160

9
w1

)
+ 5

9
w1x

′

In one case ‘‘model complexity’’ is w2
1 , in the other it is 25

81
w2

1 <
w2

1
3

Should try and avoid dependence on scaling and translation of variables
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Ridge Regression

Before optimising the ridge objective, it’s a good idea to standardise all
inputs (mean 0 and variance 1)

If in addition, we center the outputs, i.e., the outputs have mean 0, then
the constant term is unnecessary (Exercise on Sheet 2)

Then findw that minimises the objective function

Lridge(w) = (Xw − y)T(Xw − y) + λwTw
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Deriving Estimate for Ridge Regression

Suppose the data 〈(xi, yi)〉Ni=1 with inputs standardised and output
centered

We want to derive expression forw that minimises

Lridge(w) = (Xw − y)T(Xw − y) + λwTw

= wTXTXw − 2yTXw + yTy + λwTw

Let’s take the gradient of the objective with respect tow

∇wLridge = 2(XTX)w − 2XTy + 2λw

= 2

((
XTX+ λID

)
w −XTy

)
Set the gradient to 0 and solve forw(

XTX+ λID
)
w = XTy

wridge =
(
XTX+ λID

)−1

XTy
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Ridge Regression

Minimise

(Xw − y)T (Xw − y) + λwTw

Minimise (Xw − y)T (Xw − y)

subject towTw ≤ R
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Ridge Regression

As we decrease λ the magnitudes of weights start increasing
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Summary : Ridge Regression

In ridge regression, in addition to the residual sum of squares we penalise
the sum of squares of weights

Ridge Regression Objective

Lridge(w) = (Xw − y)T (Xw − y) + λwTw

This is also called `2-regularization or weight-decay

Penalising weights ‘‘encourages fitting signal rather than just noise’’
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The Lasso

Lasso (least absolute shrinkage and selection operator) minimises the
following objective function

Lasso Objective

Llasso(w) = (Xw − y)T (Xw − y) + λ
D∑
i=1

|wi|

I As with ridge regression, there is a penalty on the weights

I The absolute value function does not allow for a simple close-form
expression (`1-regularization)

I However, there are advantages to using the lasso as we shall see next
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The Lasso : Optimization

Minimise

(Xw − y)T (Xw − y) + λ
D∑
i=1

|wi|

Minimise (Xw − y)T (Xw − y)

subject to
D∑
i=1

|wi| ≤ R
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The Lasso Paths

As we decrease λ the magnitudes of weights start increasing
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Comparing Ridge Regression and the Lasso

When using the Lasso, weights are often exactly 0.

Thus, Lasso gives sparse models.
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Overfitting: How does it occur?

We haveD = 100 andN = 100 so thatX is 100× 100

Every entry ofX is drawn fromN (0, 1)

yi = xi,1 +N (0, σ2), for σ = 0.2

No regularization
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How to Choose Hyper-parameters?

I So far, we were just trying to estimate the parametersw

I For Ridge Regression or Lasso, we need to choose λ

I If we perform basis expansion

I For kernels, we need to pick the width parameter γ
I For polynomials, we need to pick degree d

I For more complex models there may be more hyperparameters
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Using a Validation Set

I Divide the data into parts: training, validation (and testing)

I Grid Search: Choose values for the hyperparameters from a finite set

I Train model using training set and evaluate on validation set

λ training error(%) validation error(%)
0.01 0 89
0.1 0 43
1 2 12
10 10 8
100 25 27

I Pick the value of λ that minimises validation error

I Typically, split the data as 80% for training, 20% for validation
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Training and Validation Curves

I Plot of training and validation error vs λ for Lasso

I Validation error curve is U -shaped
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K-Fold Cross Validation

When data is scarce, instead of splitting as training and validation:

I Divide data intoK parts

I UseK − 1 parts for training and 1 part as validation

I Commonly setK = 5 orK = 10

I WhenK = N (the number of datapoints), it is called LOOCV (Leave one
out cross validation)

valid train train train train

Run 1

train valid train train train

Run 2

train train valid train trainRun 3

train train train valid train

Run 4

train train train train valid

Run 5

17



Overfitting on the Validation Set

Suppose you do all the right things

I Train on the training set

I Choose hyperparameters using proper validation

I Test on the test set (real world), and your error is unacceptably high!

What would you do?
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Winning Kaggle without reading the data!

Suppose the task is to predictN binary labels

Algorithm (Wacky Boosting):

1. Choose y1, . . . ,yk ∈ {0, 1}N randomly

2. Set I = {i | accuracy(yi) > 51%}
3. Output ŷj = majority{yij | i ∈ I}

Source blog.mrtz.org
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Feature Selection

I Recall that small training set with many features is prone to overfitting

I What if we discard irrelevant features and using training set with fewer
features?

I Problem: there are 2n subsets of features
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Feature Selection

Forward search is a generic (i.e. learning algorithm independent) greedy
approach to identify relevant features:

I 1 Set set of selected features to F := ∅

I 2 Repeat the following until F = {1, . . . , n}:
I Set Fi := F ∪ {i} for i ∈ {1, . . . , n} \ F
I Evaluate generalization error when using only features from Fi

I Set new F to the best feature subset found

I 3 Return best overall feature subset found

Still requiresO(n2) calls to underlying learning algorithm
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Feature Selection

Filter feature selection is computationally more lightweight:

I Only keep feature xi that provide information about y

I For instance, use mutual information as criterion:

I(xi, y) =
∑
xi∈X

∑
y∈Y

p(xi, y) · log
p(xi, y)

p(xi) · p(y)

I Retain top k features
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Next Time

I Ridge Regression viewed through the Bayesian approach to Machine
Learning

I Preparation for optimization

I Lecture takes place in the University Museum
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