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Frequentist vs Bayesian Approaches

Different views on probability:

I Frequentists: Probability of an event represents long-run frequency
over a large number of repetitions of an experiment

I Bayesians: Probability of an event represents a degree of belief about
the event

Different views on statistics:

I Frequentists: Parameters are fixed, data are a repeatable random
sample, underlying parameters remain constant at every repetition

I Bayesians: Data are fixed, parameters are unknown and described
probabilistically, repetition adds knowledge about parameters
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Bayes’ Theorem

Recall basic laws of probability:

p(B|A) · p(A) =

p(A ∩B)

= p(A|B) · p(B)

Bayes’ Theorem:

p(A|B) =
p(B|A) · p(A)

P (B)

ViewingA as a proposition andB as evidence:

I p(A) is the prior representing initial belief aboutA

I p(A|B) is the posterior representing belief aboutA after learning
aboutB

I Posterior is proportional to prior times likelihood if we fixB:

p(A|B) ∝ p(B|A) · p(A)
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Priors Matter

Suppose we have a test for a disease:

I test is 95% effective, i.e., p(T |D) = 0.95

I rate of false positives is 1%, i.e., p(T |D̄) = 0.01

I the disease occurs in 0.5% of the population, i.e., p(D) = 0.005

Suppose the test is positive, what is p(D|T ):

p(D|T ) =
p(T |D) · p(D)

p(T )

=
p(T |D) · p(D)

p(T |D) · p(D) + p(T |D̄) · p(D̄))

=
0.95 · 0.005

0.95 · 0.005 + 0.01 · 0.995

≈ 0.32
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Bayesian Machine Learning

In the discriminative framework, we model the output y as a probability
distribution given the input x and the parameters w, say p(y |w,x)

In Bayesian machine learning, we assume a prior on the parameters w, say
p(w)

This prior represents a ‘‘belief’’ about the model; the uncertainty in our
knowledge is expressed mathematically as a probability distribution

When observations,D = 〈(xi, yi)〉Ni=1 are made the belief about the
parameters w is updated using Bayes’ rule

As before, the posterior distribution on w given the dataD is:

p(w | D) ∝ p(y |w,X) · p(w)
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Coin Toss Example

Let us consider the Bernoulli model for a coin toss, for θ ∈ [0, 1]

p(H | θ) = θ

Suppose after three independent coin tosses, you get T, T, T. What is the
maximum likelihood estimate for θ?
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Least Squares and MLE (Gaussian Noise)

Least Squares

Objective Function

L(w) =
N∑
i=1

(yi−w ·xi)2

MLE (Gaussian Noise)

Likelihood

p(y |X,w) =
1

(2πσ2)N/2

N∏
i=1

exp

(
− (yi −w · xi)2

2σ2

)

For estimating w, the negative log-likelihood under Gaussian noise has the
same form as the least squares objective

Alternatively, we can model the data (only yi-s) as being generated from a
distribution defined by exponentiating the negative of the objective function
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What Data Model Produces the Ridge Objective?

We have the Ridge Regression Objective, letD = 〈(xi, yi)〉Ni=1 denote the
data

Lridge(w;D) = (y −Xw)T(y −Xw) + λwTw

Let’s rewrite this objective slightly, scaling by 1
2σ2 and setting λ = σ2

τ2
. To

avoid ambiguity, we’ll denote this by L̃

L̃ridge(w;D) =
1

2σ2
(y −Xw)T(y −Xw) +

1

2τ2
wTw

Let Σ = σ2IN and Λ = τ2ID , where Im denotes them×m identity matrix

L̃ridge(w) =
1

2
(y −Xw)TΣ−1(y −Xw) +

1

2
wTΛ−1w

Taking the negation of L̃ridge(w;D) and exponentiating gives us a
non-negative function of w andD which after normalisation gives a density
function

f(w;D) = exp

(
−1

2
(y −Xw)TΣ−1(y −Xw)

)
· exp

(
−1

2
wTΛ−1w

)
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Bayesian Linear Regression (and connections to Ridge)

Let’s start with the form of the density function we had on the previous
slide and factor it.

f(w;D) = exp

(
−1

2
(y −Xw)TΣ−1(y −Xw)

)
· exp

(
−1

2
wTΛ−1w

)

We’ll treat σ as fixed and not as a parameter. Up to a constant factor (which
does’t matter when optimising w.r.t. w), we can rewrite this as

p(w |X,y)︸ ︷︷ ︸
posterior

∝ N (y |Xw,Σ)︸ ︷︷ ︸
Likelihood

· N (w | 0,Λ)︸ ︷︷ ︸
prior

whereN (· | µ,Σ) denotes the density of the multivariate normal
distribution with mean µ and covariance matrix Σ

I What the ridge objective is actually finding is the maximum a posteriori
or (MAP) estimate which is a mode of the posterior distribution

I The linear model is as described before with Gaussian noise

I The prior distribution on w is assumed to be a spherical Gaussian
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Connections to Lasso
Similarly, the lasso objective finds MAP with Laplacian prior:

I Recall that Lap(x;µ, γ) = (1/2γ) · exp(−|x− µ|/γ)

I Lasso objective:

Llasso(w;D) = (y −Xw)T(y −Xw) + λ

D∑
i=1

|wi|

I Setting λ = 4, multiplying by−1/2, and exponentiating:

g(w,D) = exp

(
−1

2
(y −Xw)TΣ−1(y −Xw)

)
· exp

−2 ·
D∑
i=1

|wi|


I Observe that

exp

−2 ·
D∑
i=1

|wi|

 =

D∏
i=1

exp(−2 · |wi|)

I That’s a product of Laplacian distributions:
Lap(x; 0, 1/2) = exp(−2 · |x|)
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Full Bayesian Prediction

The posterior distribution over parameters w in the Bayesian approach is

p(w |X,y)︸ ︷︷ ︸
posterior

∝ p(y |X,w)︸ ︷︷ ︸
likelihood

· p(w)︸ ︷︷ ︸
prior

I If we use the MAP estimate, as we get more samples the posterior peaks
at the MLE

I When, data is scarce rather than picking a single estimator (like MAP) we
can sample from the full posterior

For xnew, we can output the entire distribution over our prediction ŷ as

p(y | D) =

∫
w

p(y |w,xnew)︸ ︷︷ ︸
model

· p(w | D)︸ ︷︷ ︸
posterior

dw

This integration is often computationally very hard!
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Full Bayesian Approach for Linear Regression
For the linear model with Gaussian noise and a Gaussian prior on w, the full
Bayesian prediction distribution for a new point xnew can be expressed in
closed form.

p(y | D,xnew, σ
2) = N (wT

mapxnew, (σ(xnew))2)

See Murphy Sec 7.6 for calculations 12



Remarks on Prior Distribution

I Presence of prior point of criticism in Bayesian approach

I Prior should incorporate all reasonable background information (e.g.
domain-specific information, previous knowledge)

I If no background information available choose non-informative prior
(uniform over expected range of possible values)

I Conjugate priors allow for analytical solutions

I Bernstein-von Mises Theorem: For sufficiently large sample size,
posterior distribution becomes independent of prior distribution

(terms and conditions apply)
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Summary : Bayesian Machine Learning

In the Bayesian view, in addition to modelling the output y as a random
variable given the parameters w and input x, we also encode prior belief
about the parameters w as a probability distribution p(w).

I If the prior has a parametric form, they are called hyperparameters

I The posterior over the parameters w is updated given data

I Either pick point (plugin) estimates, e.g.,maximum a posteriori

I Or as in the full Bayesian approach use the entire posterior to make
prediction (this is often computationally intractable)

I Choice of prior can be difficult?

14


	Bayesian Approach to Machine Learning

