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Frequentist vs Bayesian Approaches

Different views on probability:

» Frequentists: Probability of an event represents long-run frequency
over a large number of repetitions of an experiment

» Bayesians: Probability of an event represents a degree of belief about
the event
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Different views on probability:

» Frequentists: Probability of an event represents long-run frequency
over a large number of repetitions of an experiment

» Bayesians: Probability of an event represents a degree of belief about
the event

Different views on statistics:

» Frequentists: Parameters are fixed, data are a repeatable random
sample, underlying parameters remain constant at every repetition

» Bayesians: Data are fixed, parameters are unknown and described
probabilistically, repetition adds knowledge about parameters



Frequentist vs Bayesian Approaches

DID THE SUN JUST EXPLODE?
(ITS NiGHT, 50 WERE NOT SURE,)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

( THEN, ITROWS TWo DCE. IF THEY

BOTH COMEUP Six, ITUES TO US.
OTHERWISE, H’TELLSTrETkLBH.

MH‘%E‘E
QWEMME?

%%m

FREQUENTIST STRISTICIAN: BAYESIAN STATISTIOAN:

THE PROBABILITY OF TS RESULT

HPPPNING BY CHANCE 15 =027 BET YU $50
e p<oos T cxDe T HASNT.
WT SUN HAS ]

1Al




Bayes' Theorem

Recall basic laws of probability:

p(ANB)



Bayes' Theorem

Recall basic laws of probability:

p(ANB) =p(A|B) - p(B)



Bayes' Theorem

Recall basic laws of probability:

p(BJA) - p(A) = p(AN B) = p(A|B) - p(B)



Bayes' Theorem

Recall basic laws of probability:
p(B|A) - p(A) = p(AN B) = p(A|B) - p(B)
Bayes' Theorem:

p(BJA) - p(A4)
p(A|B) = ~P(B)



Bayes' Theorem

Recall basic laws of probability:
p(B|A) - p(A) = p(AN B) = p(A|B) - p(B)

Bayes' Theorem:

p(BJA) - p(A4)
p(A|B) = ~P(B)

Viewing A as a proposition and B as evidence:
» p(A) is the prior representing initial belief about A

» p(A|B) is the posterior representing belief about A after learning
about B

» Posterior is proportional to prior times likelihood if we fix B:

P(A[B) o< p(B|A) - p(A)



Priors Matter

Suppose we have a test for a disease:
> testis 95% effective, i.e., p(T|D) = 0.95
» rate of false positives is 1%, i.e., p(T|D) = 0.01

» the disease occurs in 0.5% of the population, i.e., p(D) = 0.005
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Priors Matter

Suppose we have a test for a disease:
> testis 95% effective, i.e., p(T|D) = 0.95
» rate of false positives is 1%, i.e., p(T|D) = 0.01

» the disease occurs in 0.5% of the population, i.e., p(D) = 0.005

Suppose the test is positive, what is p(D|T):

p(T'|D) - p(D)
p(T)
_ p(T|D) - p(D)
p(T|D) - p(D) + p(T|D) - p(D))
_ 0.95 - 0.005
"~ 0.95-0.005 +0.01 - 0.995
~ 0.32

p(D|T) =




Bayesian Machine Learning

In the discriminative framework, we model the output y as a probability
distribution given the input x and the parameters w, say p(y | w, x)

In Bayesian machine learning, we assume a prior on the parameters w, say
p(w)

This prior represents a “belief” about the model; the uncertainty in our
knowledge is expressed mathematically as a probability distribution



Bayesian Machine Learning

In the discriminative framework, we model the output y as a probability
distribution given the input x and the parameters w, say p(y | w, x)

In Bayesian machine learning, we assume a prior on the parameters w, say
p(w)

This prior represents a “belief” about the model; the uncertainty in our
knowledge is expressed mathematically as a probability distribution

When observations, D = {(x;,¥:))IL, are made the belief about the
parameters w is updated using Bayes' rule

As before, the posterior distribution on w given the data D is:

p(w | D) x p(y | w,X) - p(w)



Coin Toss Example
Let us consider the Bernoulli model for a coin toss, for 8 € [0, 1]
p(H[0) =0

Suppose after three independent coin tosses, you get T, T, T. What is the
maximum likelihood estimate for 6?
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p(H|0) =6

Suppose after three independent coin tosses, you get T, T, T. What is the
maximum likelihood estimate for 6?

What is the posterior distribution over 6, assuming a uniform prior on 6?
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Coin Toss Example
Let us consider the Bernoulli model for a coin toss, for 6 € [0, 1]

p(H[0) =0

Suppose after three independent coin tosses, you get T, T, T. What is the
maximum likelihood estimate for 6?

What is the posterior distribution over 6, assuming a Beta(2, 2) prior on 6?
25

— Prior
— Posterior
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Least Squares and MLE (Gaussian Noise)

Least Squares MLE (Gaussian Noise)
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Least Squares MLE (Gaussian Noise)
Objective Function Likelihood

Lw) = (yi—w-xi)*  ply|X,w)= W _Hexp <_(y2‘:2X)>
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For estimating w, the negative log-likelihood under Gaussian noise has the
same form as the least squares objective



Least Squares and MLE (Gaussian Noise)

Least Squares MLE (Gaussian Noise)
Objective Function Likelihood
al 1 N (yi —w - x;)?
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For estimating w, the negative log-likelihood under Gaussian noise has the
same form as the least squares objective

Alternatively, we can model the data (only y;-s) as being generated from a
distribution defined by exponentiating the negative of the objective function
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What Data Model Produces the Ridge Objective?

We have the Ridge Regression Objective, let D = ((x;, y:)), denote the
data

Ligge(w; D) = (y — Xw) " (y — Xw) + Aw'w

Let's rewrite this objective slightly, scaling by ﬁ and setting \ = Z—i To
avoid ambiguity, we'll denote this by £

~ 1

1
Lasee (Wi D) = 55 (y = Xw) (y — Xw) + —w'w

272
Let ¥ = ¢2Iy and A = 72Ip, where I,,, denotes the m x m identity matrix

~ 1 _ 1 _
Lrigge (W) = i(y — XW)TE 1(y — Xw) + inA lw
Taking the negation of Z,idge(w; D) and exponentiating gives us a
non-negative function of w and D which after normalisation gives a density
function

f(w;D) = exp (

—%(y —Xw) 2y — Xw)) - exp (—%WTA_IW)



Bayesian Linear Regression (and connections to Ridge)

Let’s start with the form of the density function we had on the previous
slide and factor it.
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Bayesian Linear Regression (and connections to Ridge)

Let's start with the form of the density function we had on the previous
slide and factor it.

Fowi ) = xp (= = Xw) =y~ X)) - exp (- jwTA M)

We'll treat ¢ as fixed and not as a parameter. Up to a constant factor (which
does’t matter when optimising w.r.t. w), we can rewrite this as

pw|X,y) x N(y | Xw, %) - N(w | 0,A)

posterior Likelihood prior

where NV (- | u, ) denotes the density of the multivariate normal
distribution with mean p and covariance matrix X

» What the ridge objective is actually finding is the maximum a posteriori
or (MAP) estimate which is a mode of the posterior distribution
» The linear model is as described before with Gaussian noise

» The prior distribution on w is assumed to be a spherical Gaussian



Connections to Lasso
Similarly, the lasso objective finds MAP with Laplacian prior:

>

>

v

v

v

Recall that Lap(w; p1,7) = (1/27) - exp(—|z — p|/7)
Lasso objective:
D
Lusso(wW; D) = (y — XW)T(Y - Xw)+ A Z |wil
i=1

Setting A = 4, multiplying by —1/2, and exponentiating:

D
1 Te-1
oo, D) = exp (=5 = Xw)" =y~ Xow) ) - exp (—2 > wi|>
Observe that
D
exp | —2- Z |w;| Hexp - wsl)
=1

That's a product of Laplacian distributions:
Lap(z;0,1/2) = exp(—2 - |z)



Full Bayesian Prediction

The posterior distribution over parameters w in the Bayesian approach is

p(w|X,y) x p(y | X,w) - p(w)
~—

posterior likelihood prior

» If we use the MAP estimate, as we get more samples the posterior peaks
at the MLE

» When, data is scarce rather than picking a single estimator (like MAP) we
can sample from the full posterior

For x,s, We can output the entire distribution over our prediction 7 as

p(y| D) = / P( | W, Xoew) - p(w | D) dw

model posterior

This integration is often computationally very hard!



Full Bayesian Approach for Linear Regression

For the linear model with Gaussian noise and a Gaussian prior on w, the full
Bayesian prediction distribution for a new point x,., can be expressed in
closed form.

p(y | D, Xnew 0-2) = N(wlapxnew7 (O'(Xnew))Q)
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{ { Estimates using Bayesian LR
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See Murphy Sec 7.6 for calculations



Remarks on Prior Distribution

» Presence of prior point of criticism in Bayesian approach

» Prior should incorporate all reasonable background information (e.g.
domain-specific information, previous knowledge)

» If no background information available choose non-informative prior
(uniform over expected range of possible values)

» Conjugate priors allow for analytical solutions

» Bernstein-von Mises Theorem: For sufficiently large sample size,
posterior distribution becomes independent of prior distribution



Remarks on Prior Distribution

» Presence of prior point of criticism in Bayesian approach

» Prior should incorporate all reasonable background information (e.g.
domain-specific information, previous knowledge)

» If no background information available choose non-informative prior
(uniform over expected range of possible values)

» Conjugate priors allow for analytical solutions

» Bernstein-von Mises Theorem: For sufficiently large sample size,
posterior distribution becomes independent of prior distribution
(terms and conditions apply)



Summary : Bayesian Machine Learning

In the Bayesian view, in addition to modelling the output y as a random
variable given the parameters w and input x, we also encode prior belief
about the parameters w as a probability distribution p(w).

» If the prior has a parametric form, they are called hyperparameters

» The posterior over the parameters w is updated given data

v

Either pick point (plugin) estimates, e.g., maximum a posteriori

v

Or as in the full Bayesian approach use the entire posterior to make
prediction (this is often computationally intractable)

\4

Choice of prior can be difficult?
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